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ABSTRACT

Measures for visual color differences (CDs) are pivotal in
hardware and software upgrading of modern smartphone
photography. Towards this goal, we construct currently the
largest database for visual CDs of smartphone photography.
Our database consists of 15, 335 natural images 1) captured
by six latest flagship smartphones, 2) altered by Photoshop®,
3) post-processed by built-in filters of smartphones, and 4)
reproduced with incorrect color profiles. Moreover, we con-
duct a large-scale psychophysical experiment to gather visual
CDs of 30, 000 image pairs from 20 human subjects in a
well-designed laboratory environment. Last, we apply our
human-rated database to compare a total of 27 classical and
recent CD metrics. We show that existing metrics are limited
in assessing CDs of smartphone photography, and point out
promising future directions of learning-based CD metrics.

Index Terms— Color difference, color reproduction,
smartphone photography.

1. INTRODUCTION

Nowadays, a smartphone is more of a camera than a phone.
It has become the standard digital device to take pictures
and record events. Moreover, it is widely acknowledged that
the biggest selling point of smartphones is their photo-taking
quality, which spurs the manufacturers to upgrade the hard-
ware and software of the integrated camera systems at an
accelerated pace. Among all visually significant attributes
that jointly determine photo quality, color plays an increas-
ingly important role, especially in smartphone photography.

Color is not merely a physical property associated with
an object. It is a visual sensation that may be affected by
luminants, viewing conditions, and the state of the eye’s
adaptation [1]. Arguably, the most important perceptual as-
pect of color in smartphone photography is color quality

†Equal contribution
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Fig. 1. Sample images captured by six flagship smartphones
at same location using the night mode. (a) Apple iPhone 12
Pro. (b) HUAWEI Mate40 Pro. (c) OnePlus 7 Pro. (d) Sam-
sung S21 Ultra. (e) OPPO Find X3 Pro. (f) Xiaomi 11 Ultra.

(i.e., color preference), which is, however, highly subjec-
tive and culturally conditioned. Thus, it is of more practical
importance to focus on color difference (CD), which is a fun-
damental research problem, considered by researchers dating
back to Helmholtz and Schrödinger [2], Wright and Pitt [3],
and David MacAdam [4]. In early days, the psychophysi-
cal experiments [5] conducted to support the development
of CD formulas were mainly based on the measurements of
human colorimetric tolerances using large-size uniform color
patches [6]. Few of the resulting CD datasets were publicly
available. Moreover, CD formulas calibrated by the collected
subjective data show limited performance in predicting the
CDs of natural images as perceived by the human visual
system (HVS), which takes into account spatial patterns and
contexts [6, 7].

To study, develop, and recommend computational meth-
ods for evaluating CDs of color images, the Commission In-
ternationale de l’Èclairage (CIE, International Commission
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on Illumination) established the technical committee 8-02,
which was closed in 2001 with a published technical report.
This report lists a series of psychophysical experiments in-
tended to calibrate CD formulas for color images by measur-
ing the corresponding human colorimetric tolerances. Never-
theless, the numbers of reference color images in these exper-
iments are too small to sufficiently represent the natural image
manifold. Moreover, the color transforms used to induce CDs
are mostly linear or quasi-linear, which are over-simplified in
the age of smartphone photography. For example, Stokes [8]
designed an experiment using six reference images with only
systematic changes in the cathode-ray tube (CRT) display.
Uroz et al. [9] tested four printed images with systematic and
random color changes. Liu et al. [10] collected a CD dataset
including 100 images (5 references × 20 reproductions) an-
notated using a categorical judgment method for the optimiza-
tion of CIEDE2000 [5]. Due to the lack of large-scale visual
CD datasets, it is reasonable to question the generalizability of
existing CD metrics to color images captured by smartphones
with great scene complexity and content diversity.

To measure the progress of CD assessment and facilitate
the development of reliable CD metrics, we carry out so far
the most comprehensive CD study for smartphone photogra-
phy. Our contributions include:

• A large-scale dataset, including 15, 335 color images,
to cover a wide range of naturally occurring situations;

• A comprehensive psychophysical experiment to col-
lect human judgments of CDs, where we assemble
30, 000 image pairs, each of which is displayed on a
carefully color-calibrated monitor and rated by a panel
of at least 20 subjects in a well-controlled laboratory
environment;

• A thorough performance evaluation and comparison
of 27 existing CD metrics, where we find that nearly
all metrics are limited in assessing CDs of smartphone
photography.

2. PROPOSED DATASET

2.1. Dataset Preparation

Image Selection. We gather a total of 15, 335 color images
out of 1, 000 distinct natural scenes, among which 4, 002 are
captured by the authors with smartphones, 333 are down-
loaded from the Internet that carry Creative Commons li-
censes, and the remaining are color transformations of the
former two. In accordance with the DXOMARK’s tests1,
the natural scenes are selected to span a variety of realistic
shooting scenarios, in terms of (1) content diversity: animal,
plant, human, food, landscape, and cityscape; (2) background
complexity: cluttered and single-color; (3) lighting condi-
tion: diffuse light, front light, back light, natural light in

1https://www.dxomark.com

Fig. 2. The graphical user interface for subjective testing.

0 1 2 3 4 5 6 7 8 9 10
Visual CD ( V) in CIELAB

0

1500

3000

4500

6000

7500

C
ou

nt

0 1 2 3 4 5 6 7 8 9 10
Visual CD ( V) in CIELAB

0

1500

3000

4500

6000

7500

C
ou

nt

Visual CD in CIELAB Visual CD in CIELAB

Fig. 3. Empirical distributions of 30, 000 visual CDs in the
proposed dataset.

the sunrise, noon, sunset, and night; (4) weather condition:
sunshiny, cloudy, and rainy; (5) camera mode: high-dynamic-
range (HDR), night, etc. After that, all images are resized and
cropped to 1024 × 1024 to combat possible compression
artifacts.
CD Generation. We create four types of CDs that are natu-
rally occurring in smartphone photography:

• Same scene captured by different smartphones. We use
six flagship smartphones, namely (a) Apple iPhone 12
Pro, (b) HUAWEI Mate40 Pro, (c) OnePlus 7 Pro, (d)
Samsung S21 Ultra, (e) OPPO Find X3 Pro, and (f) Xi-
aomi 11 Ultra. Due to the fact that the camera system
and the associated image signal processor (ISP) are pro-
prietary, and vary among different smartphone brands,
the captured pictures inevitably exhibit different color
appearances, especially in night scenes (see Fig. 1).
One subtlety is that different cameras may produce im-
ages of different sizes and displacements, which require
cropping and alignment. We adopt a simple feature-
based method2 to estimate an affine matrix for global
(and possibly non-perfect) registration.

• Same image altered by Photoshop to simulate ISP
2https://github.com/khufkens/align_images
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Table 1. Min, max, median, and mean SRCC, PLCC, and
STRESS between two randomized subgroups with equal size
across 100 splits

Criterion Min Max Median Mean

SRCC 0.823 0.887 0.866 0.864
PLCC 0.819 0.890 0.869 0.866
STRESS 17.092 23.702 18.750 19.263

functions. Since white balance, color correction,
gamma correction, and tone-mapping are four main
sub-modules in the ISP relevant to color reproduction
and manipulation, we synthesize these color trans-
forms by adjusting the corresponding parameters in
Photoshop, respectively.

• Same image post-processed by built-in filters of the Ap-
ple iPhone 12 Pro. We select nine filters to produce
different artistic styles: vivid, vivid warm, vivid cool,
dramatic, dramatic warm, dramatic cool, mono, silver
tone, and noir3.

• Same image reproduced with incorrect International
Color Consortium (ICC) profiles. This may be the pri-
mary reason when a color management system fails to
maintain the color appearance of a natural image across
media devices. As an instance, an sRGB image may
look over-saturated on a monitor that supports a wide
color gamut, e.g., DCI-P3 and Rec. 2020. We simulate
two cases: sRGB images mis-display in DCI-P3 and
vice versa.

In the proposed dataset, the percentages of the four types
of images are 26.1%, 52.2%, 13.0%, and 6.5%, respectively.
Finally, we randomly sample 20, 000 pairs of non-perfectly
aligned images from the first type and 10, 000 pairs of per-
fectly aligned images from the remaining three types, leading
to a total of 30, 000.

2.2. Psychophysical Experiment

Experimental Setup. The subjective testing environment is
setup as a completely dark indoor office with no illumination
and little reflection. A customized graphical user interface is
devised for human data collection. As shown in Fig. 2, the
background is set to be neutral gray. A pair of images with the
same content but different color appearances are displayed
in full resolution, whose CD is rated with reference to five
pairs of grayscale samples. The lightness differences of the
five grayscale pairs in the CIELAB unit (∆E∗

ab) are around
0, 1.7, 3.4, 6.8, and 13.6, respectively. A scale-and-slider
applet is located at the bottom to collect continuous scores.

3https://backlightblog.com/iphone-filters-effects
shows the detailed descriptions of the nine artistic styles.

The viewing distance is fixed to one meter. Ten male and ten
female observers, who have normal color vision and normal
or corrected-to-normal visual acuity, participate in the psy-
chophysical experiment.

Display Characterization. Two EIZO CG319X 31.1" LCD
monitors are adopted in the experiment. The display peak
white is set to be 100 cd/m2 with a correlated color temper-
ature of 6, 500 degrees of Kelvin. The color performance of
the display is thoroughly checked and calibrated. We use CIE
recommended gamma-offset-gain display model for charac-
terization, i.e., modeling the non-linear relationship between
the digital input and the luminance of each channel in RGB
color space. The gain, offset, and gamma of each channel in
RGB are measured by a tele-spectroradiometer - JETI Spec-
bos 1211, whose accuracy is within 2% when measuring Il-
luminant A of 100 cd/m2, under the assumption of the CIE
1964 standard colorimetric observer (i.e., 10◦ observer). The
obtained model is tested to have a performance of 0.56∆E∗

ab

based on the Macbeth ColorChecker Chart, indicating that our
display is suitable for color-related vision experiments.

2.3. Visual CDs

Outlier Detection and Subject Rejection. For ease of anal-
ysis, the raw subjective score (with reference to the grayscale
grade) should be transformed to the CIELAB unit, i.e., ∆E∗

ab,
which is commonly referred to as the visual CD. Next, we en-
sure the reliability of the collected visual CDs. For the visual
CDs that lie out of 3 standard deviations are identified as out-
liers and subsequently discarded. Subjects with an outlier rate
≥ 5% are considered invalid and are rejected. After data pu-
rification, we find that all subjects are valid, and 1.09% of the
ratings are detected as outliers. The mean of valid visual CDs
of each image pair is considered as the ground-truth.
Analysis. Fig. 3 plots the histogram of visual CDs for 30, 000
image pairs in the proposed dataset, which is well fitted by a
unimodal distribution with the mode around 2. To verify the
reliability of the collected CDs, we randomly split the sub-
jects into two subgroups of equal size, and compute the Spear-
man’s rank correlation coefficient (SRCC), the Pearson linear
correlation coefficient (PLCC) and the standardized residual
sum of squares (STRESS) [35] between their respective mean
visual CDs. We repeat this procedure for 100 times, and show
the results in Table 1, where high consistency between two
subgroups have been observed.

3. APPLICATION OF THE PROPOSED DATASET

We apply the proposed dataset to compare 27 state-of-the-
art computational methods that are used for CD assessment.
The results in Table 2 are organized in terms of color-patch-
oriented and color-image-oriented methods, respectively. Ac-
cording to the algorithm design objectives, the color-image-
oriented methods are further categorized into CD metrics [5–
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Table 2. SRCC, PLCC and STRESS between predicted CDs and visual CDs in our dataset. Top section lists the representative
CD formulas developed from color patch data. Second section contains CD metrics intended for natural color images

Method Color Perfectly aligned pairs Non-perfectly aligned pairs All
space STRESS PLCC SRCC STRESS PLCC SRCC STRESS PLCC SRCC

CIELAB [11] CIELAB 31.242 0.794 0.776 29.859 0.690 0.580 31.832 0.716 0.668
CMC [12] CIELAB 33.997 0.790 0.788 34.202 0.594 0.493 35.796 0.666 0.634
CIE94 [13] CIELAB 34.670 0.793 0.774 29.952 0.699 0.574 34.213 0.712 0.656
CIEDE2000 [5] CIELAB 29.837 0.831 0.824 30.406 0.672 0.564 31.283 0.728 0.689
Huertas06 [14] OSA-UCS 36.860 0.680 0.687 34.463 0.560 0.426 36.608 0.576 0.561
S-CIELAB1[7] CIELAB 29.952 0.829 0.822 31.834 0.634 0.524 32.608 0.702 0.660
Imai01 [15] CIELAB 60.517 0.691 0.703 48.010 0.530 0.538 57.335 0.603 0.617
Hong06 [6] CIELAB 60.602 0.808 0.813 58.252 0.542 0.457 61.849 0.651 0.632
Chou07 [16] CIELAB 50.908 0.794 0.786 36.013 0.615 0.459 49.488 0.616 0.558
Simone09 [17] OSA-UCS 36.109 0.688 0.696 35.055 0.543 0.399 36.757 0.565 0.545
Pedersen12 [18] CIELAB 60.365 0.810 0.814 58.493 0.479 0.400 63.208 0.609 0.598
Lissner12 [19] CIELAB 36.437 0.608 0.620 40.232 0.332 0.242 41.189 0.428 0.419
Toet03 [20] ℓαβ 34.451 0.400 0.391 39.031 0.149 0.050 36.008 0.229 0.160
Pinson04 [21] YCbCr 51.524 0.310 0.280 59.811 0.075 0.034 59.102 0.220 0.150
SSIM [22] Gray scale 38.911 0.584 0.544 52.859 0.054 0.010 47.971 0.308 0.164
Lee05 [23] CIELAB 58.390 0.735 0.742 56.478 0.639 0.644 57.833 0.701 0.717
Ouni081[24] CIELAB 29.839 0.830 0.824 30.414 0.672 0.564 31.286 0.728 0.689
Yu09 [25] HSI 69.463 0.294 0.315 68.121 0.267 0.233 69.140 0.273 0.295
Ponomarenko11 [26] YCbCr 49.861 0.530 0.532 47.697 0.121 0.081 52.484 0.298 0.222
Gao13 [27] OCC 63.105 0.245 0.210 60.436 0.361 0.250 62.603 0.280 0.229
Lee14 [28] CIELAB 45.668 0.579 0.584 39.579 0.290 0.240 54.529 0.361 0.271
VSI [29] LMN 34.731 0.661 0.666 39.354 0.141 0.095 36.258 0.243 0.264
Jaramillo19 [30] YCbCr 43.493 0.512 0.501 50.120 0.054 0.011 68.440 0.297 0.160
Butteraugli [31] RGB 42.690 0.612 0.589 48.764 0.245 0.178 54.801 0.362 0.323

FLIP [32] CIELAB 29.365 0.743 0.714 27.565 0.730 0.638 29.197 0.716 0.663
PieAPP [33] RGB 41.546 0.502 0.512 39.625 0.483 0.410 41.896 0.467 0.451
LPIPS [34] RGB 47.162 0.670 0.679 40.307 0.253 0.233 66.604 0.407 0.259

1 The spatial extension of CIEDE2000.

7, 11–15, 17–20, 23, 24, 28, 30], general-purpose image qual-
ity models [21, 22, 25–27, 29], and just noticeable difference
(JND) measures [16,19,31–34]. We find surprisingly that the
color-patch-oriented methods perform favorably on perfectly
aligned pairs. Compared to CIEDE2000, the performance of
its two spatial extensions, S-CIELAB and Ouni08 even drops
slightly, indicating that simple spatial filtering considering the
contrast sensitivity of the HVS seems ineffective for CD as-
sessment. Overall, the CD assessment performance is better
on perfectly aligned pairs than that on non-perfectly aligned
pairs, captured by different smartphones. From the experi-
mental results, we are able to conclude that existing CD met-
rics are limited in assessing the CDs of smartphone photogra-
phy, especially when there is misalignment between the two
images, imperceptible to the human eye, though.

4. CONCLUSION

In this paper, we look at a challenging and long overlooked
problem of CD assessment for smartphone photography. We
build a large-scale CD dataset consisting of 30, 000 image
pairs that cover most naturally occurring situations in smart-
phone photography. Each image pair receives at least 20 hu-
man ratings with verified reliability. Based on this dataset,
we make a comprehensive comparison of 27 state-of-the-art
CD methods. Experiment results indicate that none of the CD
methods is able to achieve high correlations and low STRESS.
We hope our newly established dataset becomes a new bench-
mark for the development of CD metrics. A promising fu-
ture direction is to construct a learning-based and end-to-end
optimized CD method based on the proposed dataset, which
generalizes CIELAB-based metrics, and delivers superior CD
assessment performance in the presence of misalignment.
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