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Fast Multi-Scale Structural Patch Decomposition
for Multi-Exposure Image Fusion

Hui Li, Kede Ma*™, Member, IEEE, Hongwei Yong ™, and Lei Zhang™, Fellow, IEEE

Abstract— Exposure bracketing is crucial to high dynamic
range imaging, but it is prone to halos for static scenes
and ghosting artifacts for dynamic scenes. The recently pro-
posed structural patch decomposition for multi-exposure fusion
(SPD-MEF) has achieved reliable performance in deghosting,
but suffers from visible halo artifacts and is computationally
expensive. In addition, its relationship to other MEF methods is
unclear. We show that without explicitly performing structural
patch decomposition, we arrive at an unnormalized version of
SPD-MEF, which enjoys an order of 30x speed-up, and is closely
related to pixel-level MEF methods as well as the standard
two-layer decomposition method for MEF. Moreover, we develop
a fast multi-scale SPD-MEF method, which can effectively reduce
halo artifacts. Experimental results demonstrate the effectiveness
of the proposed MEF method in terms of speed and quality.

Index Terms— Multi-exposure fusion, high dynamic range
imaging, computational photography.

I. INTRODUCTION

AITHFUL reproduction of natural scenes with high

dynamic ranges (HDR) is a challenging task [1]. Due
to the low dynamic range (LDR) of current sensors, under-/
over-exposure occurs frequently in everyday photo-taking
experiences, leading to unpleasing visual appearances. This
issue has been addressed computationally by exposure brack-
eting, which captures and fuses several pictures of the same
scene at different exposure levels. An HDR image can be
reconstructed if we are able to invert the camera response
function [2] and perform fusion in radiance domain (i.e., HDR
reconstruction). Tone mapping operators [3]-[7] are needed
to render HDR images on a standard display with a limited
dynamic range. Multi-exposure fusion (MEF) [8], [9] offers
a simpler and more direct alternative by performing fusion in
intensity domain, which has been widely employed in mobile
devices for HDR imaging [10].
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A common problem of MEF methods is the introduction
of ghosting artifacts when dealing with dynamic scenes that
contain moving objects (see Fig 1). While many MEF algo-
rithms (also referred to as HDR deghosting methods) are able
to produce ghost-free images, they come with their own disad-
vantages such as substantial computational complexity due to
the need of solving a global optimization problem [11]-[13],
or suboptimal visual quality due to excessive reliance on the
reference exposure for inconsistent motion rejection [14]-[16].
Recently, Ma et al. [17] proposed the structural patch decom-
position for MEF (SPD-MEF) that demonstrates reliable
deghosting performance over a wide range of dynamic scenes.
The visual quality improvements of SPD-MEF have been
verified by MEF-SSIM [18], [19], a widely used objective
quality metric for MEF, and in two independent subjective
experiments [20], [21]. Although faster than many HDR
deghosting algorithms, SPD-MEF still takes seconds (even
minutes) to fuse high-resolution sequences, and therefore is
not suitable for real-time mobile applications. Meanwhile, it is
likely to generate visible halo artifacts for some natural scenes,
where the dynamic range differences between the foreground
and the background are large (see Fig. 1).

In this paper, we make an in-depth analysis of SPD-MEF
to gain a better understanding of its behavior. As a patch
based fusion method, SPD-MEF represents an image patch
by its mean intensity, signal strength and signal structure.
The desired patch is obtained by fusing the three components
separately in SPD-MEF. Our empirical analysis shows that
the normalization step can be skipped when fusing signal
structures without introducing noticeable differences to the
original scheme. This allows us to perform structural patch
decomposition implicitly, leading to around 30 times speed-up.
The proposed fast SPD-MEF scheme is also closely related to
pixel-level MEF methods and the standard two-layer decom-
position method for MEF. Moreover, we propose a multi-scale
approach by recursively downsampling and processing the
mean intensity images, which effectively reduces the halo
artifacts. Experiments on a variety of static and dynamic
scenes show that our fast multi-scale SPD-MEF algorithm
consistently produces visually appealing results, while being
one of the fastest among the state-of-the-arts.

II. RELATED WORK

In this section, we provide an overview of existing MEF
algorithms with emphasis on how different methods com-
pute perceptual weights for fusion, and how they design
exposure-invariant features for motion estimation.
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Examples of MEF results by Mertens09 [8] (left column), SPD-MEEF [17] (middle column) and our method (right column) on a dynamic scene (top

row) and a static scene (bottom row). One can see that our method successfully suppresses ghost and halo artifacts compared to Mertens09 and SPD-MEF.

A. MEF Methods for Static Scenes

Static MEF methods mainly consist of weight map compu-
tation [8] and weighted fusion, followed by post-processing
such as detail-enhancement [22]. The weight map smooth-
ing occurs explicitly in pixel-level fusion to keep spa-
tial consistency. Patch-level fusion smooths the weight map
implicitly via aggregating overlapping patches [23], [24].
Multi-scale decomposition is widely used in MEF for halo
reduction [8], [25]. Post-processing is often adopted to further
improve visual quality of fused images.

Specifically, Mertens et al. [8] computed the weight maps
using contrast, color saturation, and well-exposedness mea-
surements. The fusion is accomplished in a multi-scale frame-
work, where the input images are decomposed into a Laplacian
pyramid and the weight maps are smoothed within a Gaussian
pyramid. While computationally efficient, this method suffers
from possible detail loss. Li et al. enhanced the details of
Mertens’ results by solving a quadratic optimization prob-
lem [9], [22]. Shen et al. performed MEF in a boosting Lapla-
cian pyramid [26]. Kou et al. [25] replaced Gaussian smooth-
ing in [8] with gradient domain guided smoothing to further
reduce halos. Ancuti ef al. [27] provided a fast single-scale
approximation to [8] by applying Gaussian filtering to the
weight maps and adding back the details extracted using a
second-order Laplacian filter.

Li et al. [28] decomposed the input sequence into a base
layer and a detail layer, and the weight maps were computed
by saliency measurements and refined by guided filters [29]
with different parameters. Raman and Chaudhuri [30] directly
treated the detail layer as the weight map, which results in
somewhat dreary appearance. Goshtasby [23] designed the
weight maps based on the maximum entropy principle, and
smoothed them with a monotonic blending function to reduce
blocking artifacts.

Optimization-based methods have also been used in MEF.
Ma et al. [31] employed a gradient descent-based method to
optimize MEF-SSIM [18] in the image space. Despite visual
quality improvements, their algorithm is prohibitively slow.
Later, feed-forward convolutional networks were trained for
MEF [32], [33] by optimizing MEF-SSIM. Cai et al. [20]
made use of thirteen existing MEF methods to generate a
set of fused candidate images, and manually picked the best
ones as the ground truths to train a convolutional network
for single image contrast enhancement. Since this process
requires extensive human intervention, the resulting number
of sequences for training is quite limited, which may hinder
the generalization ability of the learned network.

B. MEF Methods for Dynamic Scenes

MEF methods that are motion-unaware will inevitably suffer
from ghosting artifacts when there is camera or object motion
in the scene. Camera motion is relatively mild in practical
applications, and it can be easily addressed by means of a tri-
pod or image registration techniques [34]. Most MEF methods
that handle object motion rely on specification of a reference
image such that inconsistent motion from other exposures
can be detected and discarded. A straightforward approach
to motion detection is to work in radiance domain and exploit
the linear relationship between radiance value and exposure
time. The challenge here is how to accurately recover the
camera response function using a limited number of exposures.
Gallo et al. [35] used a simple threshold to reject inconsistent
pixels. Sen et al. [14] integrated image alignment and recon-
struction into joint optimization. Kalantari et al. [36] devel-
oped a convolutional network for HDR imaging guided by
optical flow, which was improved by Wu et al. [37], towards
end-to-end training and inference. In intensity domain, various
exposure-invariant features have been explored for robust
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motion detection, such as image gradient [38], SIFT [39], deep
representation [40], Shannon entropy [41], optical flow [42],
normalized structure [16], [17], and intensity mapping [15].
It is worth noting that motion detection in MEF requires dense
correspondence across exposures, and typically suffers from
heavy computational burdens.

Methods without reliance on the reference image assume
that the background dominates the scene; moving objects are
modeled as outliers and should be removed. Li and Kang [43]
recovered the background by applying median filtering to
the histogram-equalized images. Pece and Kautz [44] made
use of median threshold bitmap for moving object detection.
Lee et al. [12] and Oh et al. [13] formulated image alignment
and motion detection as a rank minimization problem [45].
However, the assumption that background dominates does not
hold for the majority of realistic natural scenes, therefore
limiting the capability of these methods in HDR deghosting.

III. FAST MULTI-SCALE SPD-MEF

In this section, we first revisit the algorithm design of
SPD-MEF [17], and show that an unnormalized approximation
permits a neat acceleration scheme, whose relationship to other
MEF approaches is also much clearer. We then develop a fast
multi-scale SPD-MEF approach with halo reduction.

A. Background on SPD-MEF

We briefly describe how SPD-MEF [17] computes the fused
image. The core idea of SPD-MEF for static scenes is to
decompose an image patch x € RY into three conceptually
independent components: mean intensity, signal strength, and
signal structure:

L1+ x—1) - ==
X =1 X — _
X1
- X
=114 %] —
B
—14cs 1)

where 1 is an N-dimensional vector of all ones, X is the
mean-removed patch of x, and ||-|| denotes the £>-norm. / and
¢ = ||X|| are two scalars, representing the mean intensity
and the signal strength of x, respectively. s = ‘% is a unit
vector, whose direction encodes signal structure. The desired
patch of the output image can be obtained by fusing the
three components /, ¢ and s separately and then inverting the
decomposition. Specifically, assuming the input sequence has
K exposures, the desired local mean intensity is computed by

K
1= s, @)
k=1

where the weights ay > 0 for k = 1,...K mea-
sure the well-exposedness, and Zk or = 1. In SPD-MEEF,
a two-dimensional Gaussian profile is adopted to design ay:

_ 2 _ 2
ak:exp(_(ﬂk 0.5% (i 05)), 3

2 2
20 20;
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where yuy is the global mean intensity of the k-th image Xj.
oy and o; are Gaussian spreads. The desired local signal
strength is computed as the largest one across exposures:

¢ = max

Xkl = max cg. “4)
1<k<K 1<k<K

The desired local signal structure is determined by

K
$=——. and §=) fis, (5)
IIsll P
where the weights fx > 0 fork=1,..., K, and >, fr = 1.
In SPD-MEF, fy is given by

B = 1%ill” (6)

which is proportional to the signal strength ||Xg||. p > 0 is
an exponent parameter. After this, we are able to compute the
desired local patch as

X=[-1+¢-8. (7

SPD-MEF performs patch aggregation by simply averaging all
overlapping pixel values to obtain the final fused image [17].

B. Fast SPD-MEF

Much of computation in SPD-MEF comes from the struc-
tural patch decomposition in Eq. (1), whose complexity is
O(NMK), where N is the patch size, M is the number of
pixels in each exposure, and K is the number of exposures.
In this subsection, we show that this complexity can be
reduced to O(MK).

We first analyze s (refer to Eq. (5)), which is a convex
combination of K unit vectors. The norm of S satisfies

K
> Bisi
k=1

which can be easily proved by induction using the triangle
inequality and the absolute homogeneity of norm. The equality
holds for arbitrarily chosen {fx}, when all signal structures are
identical. If some s; points to a different direction, we may
still achieve the equality by assigning the corresponding fx to
zero. Empirically, we find that ||S|| computed by SPD-MEF is
close to one (see the histogram in Fig. 2). This is expected
because as long as the set of {x;} are not under-/over-exposed,
the corresponding exposure-invariant {s;} have very similar
structures, leading to ||S|| & 1. For under-exposed regions, si
mainly contains amplified noise structure; for over-exposed
regions, s; is nearly flat, i.e., LNl. In either case, sy may
point to a different direction from the true signal structure.
Fortunately, the corresponding S of those regions computed
by SPD-MEF will be close to zero, giving rise to ||S|| ~ 1. This
implies that whether the signal structure is normalized or not
has little impact on the final fusion performance. In Fig. 3,
we show the fused images by SPD-MEF with and without
normalization. We can see that the results are very similar,
as evidenced by a high SSIM score [46] of 0.999 between
them. Similar observations can be found on other sequences
in [17].

Isll =

K
<> Bellsel =1, ®)
k=1
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Fig. 2. The histogram of ||S|| computed from six pre-registered static scenes
from the image dataset in [17].

(b) MEF-SSIM = 0.991

(¢) MEF-SSIM = 0.991

Fig. 3. SPD-MEF with and without normalization. (a) Image sequence
“Landscape” (courtesy of HDRsoft). (b) Result with normalization. (c) Result
without normalization. The visual similarity between the two fused images
is verified by a high SSIM [46] value of 0.999. Similar observations can be
found on other sequences in [17].

We proceed by substituting [ in Eq. (2) and s in Eq. (5) into
Eq. (7), where we have approximated § by s. Hence,

K
£~ (ol -1+ Efi - st) 9)
k=1
K N
:Z(aklk'1+ Cigk -ik)
p %l
K
= > (ol - 1+ yx - (% — ), (10)
k=1
where y; = % By incorporating ||Xk|| into px, we are

able to perform structural patch decomposition implicitly, and
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Fig. 4. Comparison of different weight functions based on well-exposedness.

compute the final image X by

K
X =" (Ll 0 LX) + L) 0 X,
k=1

~L(% O LX), (1)
where L(-) denotes the mean filter with kernel size N, and
©® denotes the Hadamard product. That is, we apply L(-)
to Xy for computing the mean intensity map li, and apply
the same filter to the weight maps (i.e., ox and ;) as an
equivalent operation of averaging all overlapping pixel values
during patch aggregation. The mean filtering process can be
implemented in linear time via box filter [29]. As a result,
the computational complexity of SPD-MEF is reduced from
O(NMK) to O(MK), independent of patch size N.

We now take a closer look at Eq. (11). Choosing oy = yx
yields the classic form of pixel-level MEF with a smoothed
weight map L(p). If each pixel computes a separate mean
intensity from the patch centered at it, Eq. (11) becomes
K
X =D (L@) 0L (X0 +L0w) 0 (X~ L(X0)).(12)

=1

which is essentially the two-layer decomposition framework
for MEF. The weight maps for the base layer and the detail
layer are L(a) and L(yx), respectively. In the original devel-
opment of SPD-MEF [17], the authors speed up the algorithm
by sampling patches with a stride larger than one. This can
also be incorporated into Eq. (11):

K
X =" (L(Mk © & 0 L(Xp) + LMk © 1) © Xy
k=1

~L(M; © % O L(X0) ) (13)

where My is a binary mask with ones indicating patches that
have been sampled.
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Fig. 5.

C. Fast Multi-Scale SPD-MEF

The kernel size of the mean filter L, or equivalently the
patch size, has a significant impact on the final fusion perfor-
mance. A small-size kernel generally recovers more details,
but tends to produce noisy weight maps, causing spatial
inconsistency of the fused image. A large-size kernel would
resolve this problem at the cost of fine detail loss. A medium-
size kernel keeps a good balance between spatial consistency
and detail preservation, but may encourage halo artifacts near
strong edges due to unwanted smoothing [29].

Here we present a fast multi-scale SPD-MEF approach to
reduce halos, while preserving the details at different scales.
We index the original sequence as scale 1. In Eq. (11),
we notice that a desired detail layer that contains rich
high-frequency information is computed as

K
a0 =3 (LoMox( -1
k=1

L o Lx(")). (4

To make SPD-MEF multi-scale, we do not fuse L(X,El))
directly, but downsample it to obtain

X = (L)), (15)

where D(-) denotes downsampling by a factor of two. Then,
the desired detail layer at scale 2 is computed by

K

H® — Z (L(yk(Z)) o X,((Z)
k=1

L(y (Z)QL(X(Z)))). (16)

The above process is applied recursively to X,Ej ) until the
coarsest scale

J = |log, min(H, W)] — 3 (17)

is reached, where H and W represent the height and width
of the sequence, respectively. The constant three is subtracted
to ensure that the short side of the sequence at scale J has a
minimum of eight pixels, as a way of preserving low-frequency
intensity information. Finally, we compute the desired base
layer as follows:

K
BY =>"L(e” o LX(")). (18)

k=1

Visual demonstration of the proposed multi-scale SPD-MEF approach on the image sequence “Arno” (courtesy of Bartlomiej Okonek). (a) Desired
base and detail layers at four scales. (b) Final fused image.

The fused image is obtained by progressively upsampling and
adding the detail layers back to intermediate base layers:

J—1 (19

BUOLUMBYHD +AUHY)), j=1,...,

and

X =B" + HD, (20)

where U(-) denotes upsampling by a factor of two.

D. Weight Calculation

We compute Ot( )

X(J) at the coarsest scale. Instead of adopting Gaussian
curves [8], [17], we use a modified arctan function [6]:

according to the well-exposedness of

_ _x
IEJ) arctan(O.Si ‘0.5 Xy ‘/1)

) 21)
> K | arctan (0.51 — ‘0.5 - X]((J)‘ l)

where 1 is a fixed parameter. We compare four weight
functions, including bell-shaped, hat-shaped, Gaussian and
the proposed curves in Fig. 4. It can be observed that our
measure gives less penalty to slightly under-/over-exposed
intensities. This is helpful for better preserving global bright-
ness. The weight map Y for X(] ) is the same as the original
SPD-MEF [17], except that it is computed at scale j. Fig. 5
shows the intermediate results of the proposed multi-scale
SPD-MEF along with the final output.

E. Handling Dynamic Scenes

When dealing with dynamic scenes that contain noticeable
object motion, most MEF algorithms rely on a pre-selected
exposure as reference to detect inconsistent motion. Following
SPD-MEF, we select the one that has the least number of
under- and over-exposed patches [17]. Given a reference
patch s, and a co-located patch s;, we make the structural
consistency measurement as follows:

,..T,..
pr=sls ~ I TE (22)
X1l Xkl + €
where € is a small positive constant to ensure the robust-
ness to sensor noise. We also use the box filter [29] to
implement Eq. (22), which has a complexity of O(M K). With
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e L -

(j) Ours, MEF-SSIM = 0.994

Fig. 6. Visual results and the MEF-SSIM scores of different static MEF algorithms on the image sequence “Chinese garden” (courtesy of Bartlomiej Okonek).

a pre-defined threshold T, a total of K binary maps can be
created to identify static and dynamic regions

L if p(i) =T

0 if pe(i) < T, 23)

k(i) =

where i denotes the spatial index. ki is further refined
with the help of the intensity mapping function (IMF) [17].
Although it is straightforward to make and combine structural
consistency measurements at multiple scales. For simplicity,
in this paper, we perform motion detection at the original
scale only, and apply the corresponding binary maps for

multi-scale fusion. We summarize the proposed fast
multi-scale SPD-MEF method in Algorithm 1.

IV. EXPERIMENTS

In this section, we first present the implementation details
of the proposed fast multi-scale SPD-MEF approach. Then
we provide qualitative and quantitative results of our method
against the state-of-the-art MEF methods. Last, we conduct
theoretical and empirical computational complexity analysis.

Our method does not introduce any new parameter; all are
inherited from previous publications [6], [17], [24], includ-
ing the patch size (i.e., the kernel size of the mean filter)
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fF lal Z =

(b) MEF-SSIM = 0.957 (c) MEF-SSIM = 0.987 (d) MEF-SSIM = 0.989

Fig. 7. Emergence of halo artifacts. (a) Image sequence “Laurenziana”
(courtesy of Bartlomiej Okonek). (b) Ancutil7 [27]. (c¢) SPD-MEF [17].
(d) Ours.

Algorithm 1 Fast multi-scale SPD-MEF

Input: Aligned image sequence {Xy}
Output: Fused image X
1: Select a reference image, detect inconsistent motion via
structural consistency check, and compensate moving re-
gions using IMF
for scale j € [1,J — 1] do
Compute the detail layer HU) (refer to Eq. (14))
Downsample X,(g ) (refer to Eq. (15))
end for
Compute the detail layer H(7)
Generate the base layer B() using Eq. (18)
Reconstruct the fused image X with Eq. (19) and Eq. (20)

A A

N = 8 x 8 x 3 from [24] for the finest scale and N = 8 x 8 for
other scales, A = 20 that determines the arctan curve from [6],
and € = 0.032 in Eq. (22) and T = 0.8 in Eq. (23) from [17].

A. Static Scene Comparison

We compare our method with nine MEF algorithms on
21 static scenes, including Mertens09 [8], Shenll [47],
Gul2 [48], Lil3 [28], Shenl4 [26], SPD-MEF [17],
Nejatil7 [49], GGIF [25], and Ancutil7 [27]. All fused images
are either from the original authors or generated by the
publicly available implementations with default settings.

Fig. 6 visually compares our method with existing MEF
algorithms on the image sequence “Chinese garden.” Although
built upon Mertens09 [8], Shenl4 [26] generates an unnat-
ural appearance with color and structure distortions since it
nonlinearly enhances the detail layer by a simple sigmoid
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Fig. 8. Pixel intensity analysis of the zoom-in patches in Fig. 7 along the

horizontal direction. The patch from the normal-exposure image is used as
reference. The halos generated by SPD-MEF [17] and Ancutil7 [27] can be
clearly seen due to unwanted smoothing near the boundaries. Our method
closely approximates the boundaries of the reference patch as expected.

function. Relying on gradients, Gul2 [48] makes little use of
color information, and over-shoots the details by solving the
Poisson equation in gradient domain [4]. The color appearance
produced by Shenl1 [47] is slightly better, but the overall con-
trast is somewhat reduced. In addition, ringing artifacts appear
near strong edges because of excessive nonlinear manipulation
of subbands. The above three methods equate detail enhance-
ment with visual quality improvement, which is not always
true, especially in the case of over-enhancement. Lil3 [28],
SPD-MEF [17], Nejatil7 [49], and Ancutil7 [27] exhibit dif-
ferent degrees of halo artifacts in the sky regions (zoom in for
improved visibility). Compared to Lil3, Nejatil7 reduces the
halos by replacing Gaussian filtering with guided filtering [29]
in the two-layer decomposition. Mertens09 [8] and our method
produce similar results on this sequence with little artifacts.
To better understand the emergence of halo artifacts in MEF,
we show another visual example in Fig. 7, where we compare
our method with SPD-MEF [17] and Ancutil7 [27] on the
image sequence “Laurenziana.” The boundaries (e.g., zoom-in
patches) between the foreground and the background with
large dynamic range differences are the main sources of halo
artifacts. To faithfully reproduce fine details across exposures,
single-scale methods such as SPD-MEF and Ancutil7 often
choose medium-size kernels, which may lead to unwanted
smoothing along strong edges, resulting in visually unpleasant
“halos” (see Fig. 8). The proposed multi-scale SPD-MEF
approach resolves this issue by diluting the halos more glob-
ally, making the appearance more natural (see also Fig. 10).
We objectively evaluate the quality of fused images gen-
erated by different MEF algorithms using MEF-SSIM [18],
which has been verified by comparing to human data [50]
and through perceptual optimization [31]. MEF-SSIM [18]
summarizes local structure preservation and global luminance
consistency into an overall score between 0 and 1, with a
higher value indicating better perceptual quality. From Table I,
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TABLE I

QUANTITATIVE COMPARISON OF OUR METHOD WITH EXISTING MEF ALGORITHMS USING MEF-SSIM [18] ON THE SEQUENCES IN [17]. THE SCORE
RANGES FROM 0 TO 1 WITH A HIGHER VALUE INDICATING BETTER PERFORMANCE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Image sequence Mertens09  Shenll Gul2 Lil3 Shenl4 SPD-MEF Nejatil7 GGIF Ancutil7 Ours
(8] [47] (48]  [28] [26] [17] [49] [25] [27]
Arno 0.991 0955 0.890 0969  0.846 0.984 0.985 0.970 0.915 0.990
Balloons 0.969 0940 0913 0948 0.776 0.969 0.971 0.951 0.929 0.963
Belgium house 0.971 0935 0.896 0964 0.709 0.973 0.972 0.968 0.938 0.977
Cave 0.975 0946 0934 0978 0.788 0.985 0.979 0.979 0.958 0.984
Chinese garden 0.989 0964 0927 0984  0.767 0.991 0.991 0.983 0.974 0.994
Church 0.989 0959 0.866 0992  0.878 0.993 0.991 0.992 0.980 0.991
Farmhouse 0.981 0966 0932 0985 0944 0.984 0.983 0.982 0.976 0.986
House 0.964 0925 0.876 0957 0.396 0.960 0.949 0.961 0.893 0.973
Lamp 0.969 0917 0.875 0929  0.539 0.956 0.960 0.945 0.877 0.967
Landscape 0.976 0955 0941 0942  0.880 0.993 0.992 0.947 0.939 0.989
Laurenziana 0.988 0956 0.873 0987  0.881 0.987 0.986 0.985 0.957 0.989
Madison capitol 0.977 0940 0.864 0968  0.542 0.983 0.978 0.969 0.907 0.990
Mask 0.987 0964 0.879 0979  0.827 0.988 0.988 0.977 0.948 0.991
Office 0.985 0958 0900 0967 0.756 0.990 0.988 0.984 0.957 0.989
Ostrow 0.974 0950 0.877 0967 0.786 0.978 0.978 0.977 0.925 0.979
Room 0.974 0945 0.853 0986  0.729 0.978 0.976 0.983 0.958 0.980
Set 0.986 0974 0911 0960 0.873 0.988 0.988 0.966 0.905 0.992
Tower 0.986 0946 0932 098  0.779 0.986 0.986 0.986 0.962 0.988
Venice 0.966 0930 0.889 0954  0.765 0.984 0.976 0.952 0.932 0.984
Window 0.982 0959 0.876 0971  0.879 0.982 0.981 0.972 0.936 0.982
Yellow hall 0.995 0983  0.869 0990 0.866 0.995 0.996 0.987 0.966 0.997
Average 0.980 0951 0.894 0970 0.772 0.982 0.981 0.972 0.940 0.985
TABLE 11

COMPUTATIONAL COMPLEXITY COMPARISON OF OUR METHOD AGAINST
STATE-OF-THE-ART DEGHOSTING SCHEMES

Algorithm Complexity
Sen12 [14] O(I; NMK?)
Hul3 [11] O(I; N(M log M)K)
Leel4 [12] O(I,I; MK?)
Lil4 [15] O(MK)
Qinl5 [16] O(I; NM?K)
Oh15 [13] O(I,I; MK?)
SPD-MEF [17] O(NMK)
Ours O(MK)

we observe that our method achieves the best performance on
average. Specifically, it outperforms the competing algorithms
on 13 out of 21 natural scenes. It should be noted that though
MEF-SSIM has been a de facto measure for MEF outputs,
it is not good at capturing halos and may even prefer such
artifacts [31]. Therefore, the perceptual gains of our method
may not be fully reflected in terms of MEF-SSIM.

B. Dynamic Scene Comparison

We compare our method with eight state-of-the-art HDR
deghosting algorithms that cover a wide range of design
philosophies, including low rank-based methods Leel4 [12]
and Oh15 [13], energy-based methods Senl2 [14], Hul3 [11]
and Qinl5 [16], and feature-based methods Lil4 [15],
Liul5 and Wang [39] and SPD-MEF [17]. For HDR
reconstruction algorithms (i.e., fusion in radiance domain),
the Debevec and Malik’s method [51] is used to estimate the
camera response function. In order to generate LDR images for

visual comparison, Lee14 makes use of the MATLAB function
tonemap(), and Sen12 and Hul3 fuse aligned sequences using
Photomatix [52] and Mertens09, respectively.

Fig. 9 shows the fusion results on the image sequence
“Girl.” Senl2 [14] produces an over-enhanced image that
looks unnatural. This is largely attributed to the aggressive
settings of Photomatix [52] to enhance HDR details. In gen-
eral, it is delicate for HDR reconstruction algorithms to select
proper tone mapping operators for dynamic range compres-
sion. Leel4 [12] and Oh15 [13] suffer from ghosting artifacts,
which is expected because small motion does not satisfy the
low rank assumption. In addition, solving such an optimization
problem with a limited number of exposures is relatively unsta-
ble, and may result in other forms of distortions. Liul5 and
Wang [39] relies on dense SIFT features, which may not be
robust to exposure change, making deghosting unsuccessful.
Some halos around the girl’s legs are visible in the fused
image generated by SPD-MEF [17]. Hul3 [11] and Qinl5 [16]
may generate shifted colors and deformed structures due to
inaccurate patch matching during energy minimization. The
results produced by Lil4 [15] and our method are visually
similar on this sequence.

C. Computational Complexity Comparison

We conduct a concise computational complexity analy-
sis of HDR deghosting schemes in terms of the number
of floating-point operations. We refer the interested readers
to [12], [17] for a more detailed complexity analysis. Assume
the input sequence has K exposures, each of which contains
M pixels (K <« M); for patch-wise methods, the patch size
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(b) Senl2 [14]

(h) Oh15 [13]

(i) SPD-MEF [17]
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R

(j) Ours

Fig. 9. Visual comparison of our method with state-of-the-art dynamic MEF algorithms on the image sequence “Girl” (courtesy of Zhengguo Li).
TABLE III
AVERAGE RUNNING TIME COMPARISON ON 12 DYNAMIC SCENES OF APPROXIMATELY THE SAME SIZE (683 x 1024 x 3 x 3)
Alg Senl2 [14] Hul3 [11] Leel4 [12] Qinl5 [16] Ohl5 [13] SPD-MEF [17] Ours
Env MATLAB+Mex  MATLAB+Mex  MATLAB+Mex MATLAB+Mex MATLAB MATLAB MATLAB
Time (s) | 75.28 £20.48  114.96 +45.29  36.91 &£ 11.55  465.06 = 298.87  40.93 £ 9.93 57.48 +3.21 1.92 £0.20

is assumed to be N; for iterative algorithms, the iteration
numbers used in the inner and outer loops are I; and I,
respectively. The complexities of different methods are listed
in Table II, where we find that the proposed method and
Lil4 [15] enjoy the lowest computational complexity, which
is linear with the number of pixels in the sequence.

The average running time of different algorithms on 12 nat-
ural scenes is listed in Table III. Note that since the imple-
mentations of some algorithms in Table II are not publicly

available, we are not able to report the running time of
those algorithms in Table III. The experiment is conducted
on a computer with 4GHz CPU and 32GB RAM. To make
a fair comparison, the stride of SPD-MEF is set to one.
Our MATLAB code runs the fastest among the competing
algorithms, accelerating the original SPD-MEF more than
30 times. When compared to Mertens09 [8] that is widely
adopted in mobile devices as a core module to capture
HDR-like pictures (i.e., the HDR mode) [10], our method
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(b) Single-scale, MEF-SSIM = 0.851

Fig. 10.

(c) Three-scale, MEF-SSIM = 0.926

(d) Five-scale, MEF-SSIM = 0.963

The number of scales in our method plays an important role in fusion quality. (a) Image sequence “Balloons” (courtesy of Erik Reinhard).

(b) Single-scale result. (c) Three-scale result. (d) Five-scale result, whose scale is computed adaptively using Eq. (17).

(b) Hat, MEF-SSIM = 0.985 (c) Bell, MEF-SSIM = 0.980

(d) Gaussian, MEF-SSIM = 0.983

(e) Ours, MEF-SSIM = 0.992

Fig. 11. Visual comparison of different intensity weight functions. (a) Image
sequence “Set” (courtesy of Jianbing Shen).

shares the same computational complexity, and therefore has
great potentials in enabling real-time mobile applications for
challenging dynamic scenes.

D. Ablation Experiments

1) Impact of the Number of Scales: We first visualize
the impact of the number of scales J on the final fusion
performance using the image sequence “Balloons”. When the
number of scales increases, our method gradually spreads the

TABLE IV

IMPACT OF THE NUMBER OF SCALES IN TERMS OF MEF-SSIM
AVERAGED OVER THE STATIC DATASET IN [17]

# of scale | Single Three Adaptive (Ours)
MEF-SSIM | 0.849  0.961 0.985
TABLE V

IMPACT OF WEIGHT FUNCTIONS IN TERMS OF MEF-SSIM
AVERAGED OVER THE STATIC DATASETIN [17]

Bell
0.981

Ours
0.985

Gaussian
0.982

Function | Hat
MEF-SSIM | 0.983

halos around the two balloons over the background, making
the sky brighter and perceptually more appealing (see Fig. 10).
The spatial inconsistency is also effectively reduced at the
price of some detail loss (e.g., around the sun). Our adaptive
strategy of determining J according to Eq. (17) achieves a
satisfactory trade-off among spatial consistency, detail preser-
vation, and halo suppression.

This observation is consistent across many static scenes.
In Table IV, we list the average MEF-SSIM scores of the pro-
posed method w.r.t. different scales on the static dataset [17].
We can see that the proposed adaptive scale-selection method
achieves the best results.

2) Impact of the Weight Functions: We have drawn four
weight functions in Fig. 4. Here we visually compare the
fusion results in Fig. 11, where we find that the hat-shaped
and Gaussian curves generate visually close results because
both weight intensities in a similar fashion. Compared to
the bell-shaped curve, the proposed weight function is more
friendly to less well-exposed intensities, resulting in a slightly
brighter overall appearance with a higher MEF-SSIM value.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on May 02,2020 at 03:57:40 UTC from IEEE Xplore. Restrictions apply.



LI et al.: FAST MULTI-SCALE SPD FOR MULTI-EXPOSURE IMAGE FUSION

In Table V, the average MEF-SSIM scores of the pro-
posed method w.r.t. different weight functions on the static
dataset [17] are listed. We can see that the proposed weight
function achieves the best results.

V. CONCLUSION

We studied in-depth the structural patch decomposi-
tion (SPD) method for MEF, and presented an unnormalized
approximation of it, which speeds up SPD-MEF more than
30 times without sacrificing the MEF performance. We then
presented a multi-scale extension of SPD-MEF to effectively
reduce halo artifacts near strong edges. Quantitative and qual-
itative experiments on static and dynamic scenes validated the
advantages of the proposed fast multi-scale SPD-MEF method,
which provides a practical solution to fusing high-resolution
dynamic sequences on mobile devices.
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