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Abstract

As smartphones become people’s primary cameras to

take photos, the quality of their cameras and the associated

computational photography modules has become a de facto

standard in evaluating and ranking smartphones in the con-

sumer market. We conduct so far the most comprehensive

study of perceptual quality assessment of smartphone pho-

tography. We introduce the Smartphone Photography At-

tribute and Quality (SPAQ) database, consisting of 11,125

pictures taken by 66 smartphones, where each image is at-

tached with so far the richest annotations. Specifically, we

collect a series of human opinions for each image, including

image quality, image attributes (brightness, colorfulness,

contrast, noisiness, and sharpness), and scene category la-

bels (animal, cityscape, human, indoor scene, landscape,

night scene, plant, still life, and others) in a well-controlled

laboratory environment. The exchangeable image file for-

mat (EXIF) data for all images are also recorded to aid

deeper analysis. We also make the first attempts using the

database to train blind image quality assessment (BIQA)

models constructed by baseline and multi-task deep neu-

ral networks. The results provide useful insights on how

EXIF data, image attributes and high-level semantics in-

teract with image quality, how next-generation BIQA mod-

els can be designed, and how better computational pho-

tography systems can be optimized on mobile devices. The

database along with the proposed BIQA models are avail-

able at https://github.com/h4nwei/SPAQ.

1. Introduction

Perceptual image quality assessment (IQA) aims to

quantify human perception of image quality. IQA methods

can be broadly classified into two categories: subjective and

objective IQA [35]. Although time-consuming and expen-
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sive, subjective IQA offers the most reliable way of evaluat-

ing image quality through psychophysical experiments [30].

Objective IQA, on the other hand, attempts to create com-

putational models that are capable of automatically predict-

ing subjective image quality [3]. In the past decades, there

have been a significant number of studies on both direc-

tions [1, 12, 17], most of which focus on synthetic distor-

tions, with the assumption that the original undistorted im-

ages exist and can be used as reference [37].

In recent years, there has been a fast development of

smartphone photography technologies. From a hardware

perspective, dual-camera systems prevail, representing ma-

jor advancements for the unprecedented photography expe-

rience. From a software perspective, computational meth-

ods play a more and more important role, introducing novel

features such as digital zoom, HDR, portrait and panorama

modes. It could be argued that the camera system along

with the integrated computational photography module has

become a crucial part and one of the biggest selling points of

smartphones. Nevertheless, the vast majority of pictures are

taken by inexperienced users, whose capture processes are

largely affected by lighting conditions, sensor limitations,

lens imperfections, and unprofessional manipulations. Ar-

guably it is often challenging for professional photogra-

phers to acquire high-quality pictures consistently across a

variety of natural scenes, especially in low-light and high-

dynamic-range (HDR) scenarios [7]. As a result, real-world

smartphone photos often contain mixtures of multiple dis-

tortions, which we call realistic camera distortions (as op-

posed to distortions such as JPEG compression that may be

synthesized). Therefore, if the visual quality of the captured

images could not be quantified in a perceptually meaning-

ful way, it is difficult to develop next-generation smartphone

cameras for improved visual experience.

In this paper, we carry out so far the most comprehen-

sive study of perceptual quality assessment of smartphone

photography. Our contributions include:

• A large-scale image database, which we name Smart-

phone Photography Attribute and Quality (SPAQ)
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Database # images # cameras Type of cameras
Subjective # image # scene # EXIF

environment attributes categories tags

BID 585 1 DSLR Laboratory N/A N/A N/A

CID2013 480 79 DSLR/DSC/Smartphone Laboratory 4 N/A N/A

LIVE Challenge 1,162 15∗ DSLR/DSC/Smartphone Crowdsourcing N/A N/A N/A

KonIQ-10k 10,073 N/A DSLR/DSC/Smartphone Crowdsourcing 4 N/A 3

SPAQ 11,125 66 Smartphone Laboratory 5 9 7

Table 1. Comparison of IQA databases of camera distortions. DSLR: Digital single-lens reflex camera. DSC: Digital still camera. N/A:

Not applicable. ∗ LIVE Challenge Database provides the number of manufacturers only.

database, consisting of 11, 125 realistic pictures taken

by 66 mobile cameras from eleven smartphone manu-

facturers. To aid comparison among different cameras,

a subset of 1, 000 pictures in SPAQ are captured under

the same visual scenes by different smartphones [33].

Each image comes with EXIF data, which provide use-

ful information about the scene being captured (e.g.,

time and brightness) and the camera settings (e.g., ISO

and f-number) [32].

• A large subjective experiment conducted in a well-

controlled laboratory environment. We carefully de-

sign our experimental protocols to collect the mean

opinion score (MOS) for each image and verify its re-

liability. Additionally, each image is annotated with

five image attributes that are closely related to percep-

tual quality [9]. We also classify the images into nine

scene categories by content information to facilitate a

first exploration of the interactions between perceptual

quality and high-level semantics.

• An in-depth analysis of the relationship between EXIF

tags, image attributes, scene category labels and image

quality based on subjective data. Moreover, the cam-

eras of different smartphones are compared and ranked

according to our subjective study.

• A family of objective BIQA models for smartphone

pictures based on deep multi-task learning [10]. This

allows us, for the first time, to investigate how EXIF

tags, image attributes and scene labels affect quality

prediction from a computational perspective. More

importantly, the results shed light on how to create bet-

ter photography systems for smartphones.

2. Related Work

In this section, we review representative IQA databases

and BIQA models, with emphasis on realistic camera dis-

tortions.

2.1. Databases for IQA

Databases have played a critical role in scientific re-

search [27]. In IQA, the creation of the LIVE database [30]

validates the perceptual advantages of the structural sim-

ilarity (SSIM) index [37] and the visual information fi-

delity (VIF) measure [29] over the widely used mean

squared error (MSE). The introduction of the CSIQ [16] and

TID2013 [25] databases allows objective IQA models to

be compared in cross-database and cross-distortion settings,

which highlights the difficulties of distortion-aware BIQA

methods in handling unseen distortions. The release of the

Waterloo Exploration Database [19] along with the group

maximum differentiation (gMAD) competition methodol-

ogy [18] probes the generalizability of BIQA models to

novel image content. The above-mentioned databases fa-

cilitate IQA research on how humans and machines assess

the perceptual quality of images during processing, com-

pression, transmission, and reproduction, where the degra-

dations can be synthesized. However, they become less rel-

evant when we study smartphone captured images, whose

distortions are realistic, complex, and hard to simulate.

There has been limited work studying subjective IQA for

realistic camera distortions. Ciancio et al. [2] made one

of the first steps and built a small dataset of 585 realisti-

cally blurred pictures taken by a digital single-lens reflex

camera. Toni et al. [33] constructed a database that spans

eight visual scenes with a number of mobile devices. Ghadi-

yaram and Bovik created the LIVE Challenge Database [5],

which contains 1, 162 images by 15 mobile cameras. The

MOSs were crowdsourced via a web-based online user

study. The current largest IQA database - KonIQ-10k [9]

includes 10, 073 images selected from YFCC100M [32].

The perceptual quality of each image was also annotated via

crowdsourcing together with four image attributes. By con-

trast, the proposed SPAQ database is specifically for smart-

phone photography with stringent hardware constraints on

sensors and optics. Along with EXIF data, each image in

SPAQ has image quality, attribute annotations, and high-

level scene category labels collected in a well-controlled

laboratory environment. Table 1 summaries and compares

existing databases for realistic camera distortions.

2.2. Objective BIQA Models

Computational models for BIQA do not require an

undistorted reference image for quality prediction of a test
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image [36]. Early BIQA models [4, 20–23, 39] mainly

focus on synthetic distortions, which have been empiri-

cally shown to generalize poorly to realistic camera distor-

tions [5, 41]. This is a consequence of domain shift, and

is also referred to as the cross-distortion-scenario challenge

in IQA [42]. For BIQA of realistic camera photos, Ghadi-

yaram and Bovik [6] extracted a bag of natural scene statis-

tics (NSS). Zhang et al. [41] proposed a deep bilinear model

to handle both synthetic and realistic distortions. Later, they

introduced a training strategy [42] that is able to learn a

unified BIQA model for multiple distortion scenarios. The

BIQA models proposed in this paper emphasize more on

exploiting additional information such as EXIF tags, image

attributes, and semantic labels to aid quality prediction.

3. SPAQ Database

In this section, we first describe the construction of

the proposed SPAQ database for smartphone photography.

Next, we present the subjective assessment environment for

collecting human annotations, including MOSs (for image

quality), image attribute scores, and scene category labels.

3.1. Database Construction

We collect a total of 11, 125 realistically distorted pic-

tures. To support comparison among smartphones, a sub-

set of 1, 000 images are captured by different cameras un-

der a few challenging scenes, including night, low-light,

high-dynamic-range, and moving scenes. SPAQ represents

a wide range of realistic camera distortions, including sen-

sor noise contamination, out-of-focus blurring, motion blur-

ring, contrast reduction, under-exposure, over-exposure,

color shift, and a mixture of multiple distortions above.

Sensor noise often occurs in night scenes or indoor scenes

with low-light conditions, where high ISO must be applied.

Out-of-focus blur can be created deliberately or uninten-

tionally, and it does not necessarily lead to visual quality

degradation [34]. Motion blur appears when camera shakes

or object moves rapidly in the scene. Global and local con-

trast may not be fully reproduced for scenes under poor

weather conditions or with high dynamic ranges. Color

shift may result from incorrect white balance or other com-

putational methods for post-processing. An important fact

of smartphone photography is that mixtures of distortions

frequently occur, making the images substantially different

from those created by synthetic distortions.

The images are initially saved with high resolution, typ-

ically in the order of six megapixels and more. The gigan-

tic image size poses a challenge to existing BIQA mod-

els, whose computational complexities are generally high.

Therefore, we choose to downsample the raw pictures such

that the shorter side is 512, and stored them in PNG format.

Sample images in SPAQ can be found in Figure 1.

Each image in SPAQ is associated with
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Figure 1. Sample images in SPAQ. (a) Animal. (b) Cityscape. (c)

Human. (d) Indoor scene. (e) Landscape. (f) Night scene. (g)

Plant (h) Still life. (i) Others. All images are cropped for neat

presentation.

• EXIF tags, including 1) focal length, 2) f-number

(inversely proportional to aperture size), 3) exposure

time, 4) ISO (light sensitivity of sensor), 5) brightness

value (brightness of focus point in the scene), 6) flash

(flash fired or not), 7) time (when image was recorded).

Since the brightness value is not provided by some

smartphone manufacturers, we make an educated es-

timation using the exposure equation [11].

• MOS, a continuous score in [0, 100] to represent the

overall quality of the image. A higher score indicates

better perceived quality.

• Image attribute scores, including 1) brightness, 2) col-

orfulness, 3) contrast, 4) noisiness, and 5) sharpness.

Similar to MOS, each attribute is represented by a con-

tinuous score in [0, 100] (see Figure 2 (a)).

• Scene category labels, including 1) animal, 2)

cityscape, 3) human, 4) indoor scene, 5) landscape,

6) night scene, 7) plant, 8) still life, and 9) others.

The category of still life refers to images that contain

salient static objects (not living things); the category

of “others” includes images from which human anno-

tators find difficulty in recognizing the visual content

due to abstract nature or extremely poor quality. It is

worth noting that one image may have multiple labels

(see Figure 2 (b)).
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Brightness:

Sharpness:

Overall:

Contrast:

Colorfulness:

Noisiness:

Subjective user study 

Continue

Worst exposure Best exposure

0 20 10040 60 80
Less chromatic More chromatic

0 20 10040 60 80

Low High

0 20 10040 60 80

Clean Noisy

0 20 10040 60 80
Blurry Sharp

0 20 10040 60 80

Bad Excellent

0 20 10040 60 80

FairPoor Good

(a)

Subjective user study 

Continue

Animal Cityscape Human

Landscape Night scene

Plant Still life Others

Indoor scene

(b)

Figure 2. Graphical user interfaces used in our subjective experi-

ments. (a) Quality rating. (b) Scene classification.

3.2. Subjective Testing

MOSs and Image Attribute Scores We invite more than

600 subjects to participate in this subjective test. To ob-

tain consistent and reliable human ratings, the experiment

is conducted in a well-controlled laboratory environment.

Figure 2 (a) shows the graphical user interface. Subjects

are asked to rate the quality of an image on a continuous

scale in [0, 100], evenly divided and labeled by five qual-

ity levels (“bad”, “poor”, “fair”, “good”, and “excellent”).

Additionally, we ask the subjects to provide five other con-

tinuous scores from 0 to 100, representing the degrees of

brightness, colorfulness, contrast, noisiness, and sharpness,

respectively.

Scene Category Labels Participants are invited to pro-

vide scene category labels for each image in SPAQ using

a multi-label method, including animal, cityscape, human,

indoor scene, landscape, night scene, plant, still life, and

others. The graphical user interface for scene labeling is

given in Figure 2 (b), where an image can be labeled by one

or more categories.

We refer the interested readers to the supplementary file

for a complete description of the subjective experiment re-

garding the testing environment, the training and testing

phases, the outlier removal and the reliability of subjective

data.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Sample images in SPAQ. (a) ISO = 1, 600. (b) ISO =

2, 000. (c) exposure time = 0.03s. (d) exposure time = 0.06s. (e)

f-number = 2.0. (f) f-number = 2.2. (g) and (h) f-number = 2.2,

exposure time = 0.059s, and ISO = 1, 757.

4. Subjective Data Analysis

In this section, we analyze the collected subjective data

in SPAQ to reveal the relationships between EXIF tags, im-

age attributes, scene category labels and image quality. We

then rank several smartphone cameras based on the subjec-

tive results.

4.1. Interactions between Perceptual Image Quality
and Various Factors

EXIF Tags To explore the relationship between the EXIF

tags and image quality, we present some sample images

captured with different camera settings in Figure 3. When

playing with ISO, we find that higher ISO numbers yield

brighter images but with a significant amount of noise (see

Figure 3 (a) and (b)). This shows that ISO is predictable

of image quality especially for night scenes. When playing

with exposure time, we find that if camera shakes or object

is moving fast, motion blurring occurs even for a relatively

short exposure (see Figure 3 (c)), and over-exposure also

arises if we double the exposure time (see Figure 3 (d)). It
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Attribute
Image attribute scores

from humans by MT-A

Brightness 0.784 0.704

Colorfulness 0.844 0.760

Contrast 0.874 0.786

Noisiness 0.893 0.832

Sharpness 0.958 0.904

Table 2. SRCC results between MOSs and image attribute scores

from humans and MT-A (our proposed computational model), re-

spectively.

is well-known that different aperture sizes lead to different

depths of field. Generally, with a smaller aperture size, the

range of distance in focus is larger, and therefore out-of-

focus blur is less likely to happen (see Figure 3 (e) and (f)).

Finally, the two different visual scenes in Figure 3 (g) and

(h) are captured with the same camera setting, where we

see that they suffer from a similar combination of distor-

tions, leading to similar perceptual quality. In summary, the

EXIF tags convey rich side information that may be helpful

for predicting image quality. As will be clear in Section 5.2,

computational models that make proper use of EXIF infor-

mation greatly boost quality prediction performance.

Image Attribute Scores To investigate how each image

attribute affects perceived quality, we compute the Spear-

man’s rank correlation coefficient (SRCC) between MOSs

and attribute scores, as listed in Table 2. We find that

sharpness and noisiness have higher correlations with im-

age quality compared to brightness and colorfulness. This is

consistent with the hypothesis that the human eye is highly

adapted to extract local structures [37], and is less sensitive

to global brightness change.

Scene Category Labels We draw the MOS distribution

(discretized to five quality levels) for each scene category

in Figure 4, from which we have some interesting obser-

vations. First, the MOSs of the “others” category concen-

trate at low quality levels. This is expected because im-

ages in this category are unrecognizable largely due to poor

visual quality. Second, images of night scenes generally

exhibit poor quality with large under-exposed and noisy re-

gions (see Figure 3 (g) and (h)), emphasizing the challenges

for low-light photography. Finally, images with different

scene categories have noticeable MOS distributions, sug-

gesting high-level semantic effect on visual perception of

image quality.

4.2. Smartphone Camera Comparison

At the beginning, it is important to note that this study

is independent of any telecommunication device manufac-

tures or service providers. In SPAQ, a subset of 1, 000 im-
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Figure 4. Discretized MOS distributions of images with different

scene categories. See Figure 2 (a) for the specification of the five

quality levels.

Top-5 cameras Bottom-5 cameras

Type # scenes Type # scenes

Apple iPhone 6s Plus 22 Meitu M6 21

Huawei PRA-AL00 19 Vivo X7 17

Oppo A33m 17 Samsung SM-G9006V 16

Oppo R9 Plusm A 16 Xiaomi MI 6 15

Xiaomi MIX 2 15 Apple iPhone SE 14

Table 3. The top and bottom performing smartphone cameras

based on image quality.

ages containing 50 visual scenes are captured by 20 smart-

phone cameras for performance comparison. Many images

are taken under tough conditions to challenge the smart-

phone photography systems, including low-light, high-

dynamic-range, and moving scenes.

For the 50 visual scenes, we count the number of top-5
and bottom-5 pictures that belong to each smartphone cam-

era based on image quality. The results are listed in Table 3,

where we find that Apple iPhone 6s Plus achieves the best

results with 22 scenes at the top-5, while Meitu M6 is at

the bottom among 20 smartphone cameras. The success of

Apple iPhone 6s plus may result from its stabilization and

noise reduction post-processing methods, which help im-

prove the quality of images captured under less ideal condi-

tions. More information about the visual scenes and the

smartphone camera ranking samples can be found in the

supplementary.

5. Objective Quality Models

Based on the proposed SPAQ database, we train a deep

neural network (DNN) to predict the perceptual quality of
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smartphone captured images and three variants that make

use of EXIF tags, image attributes, and scene category la-

bels, respectively.

5.1. Baseline Model

We adopt ResNet-50 [8] as the backbone to construct our

baseline model - BL. We change the final fully connected

layer to one output, and drop the softmax function. The pa-

rameters of BL are collectively denoted by wB. The training

mini-batch consists of {x(i), q(i)}mi=1, where x(i) is the i-th
input color image and q(i) is the corresponding MOS. We

exclude pre-processing that would dramatically alter image

quality such as global mean removal and contrast normal-

ization. The output of BL is a scalar q̂(i), representing the

predicted quality score of x(i). We replace the cross en-

tropy function for image classification with ℓ1-norm as the

empirical loss

ℓ1(wB) = ‖q − q̂‖1 =
m
∑

i=1

|q(i) − q̂(i)|. (1)

In our experiments, we find that fine-tuning ResNet-50 [8]

from pre-trained weights performs better than training the

network from scratch or starting from other pre-trained net-

work architectures (e.g., AlexNet [15] and VGG16 [31]),

which is consistent with the observations in [14].

5.2. Multi-Task Learning from EXIF Tags

We train a variant of the baseline model, namely MT-

E, by incorporating EXIF data using multi-task learning.

Specifically, each image has seven EXIF tags, among which

focal length, f-number and ISO are categorical variables,

exposure time and brightness are continuous, flash is binary,

and time (image was recorded) is periodic. The input mini-

batch samples are formed as {x(i), o(i), q(i)}mi=1, where o(i)

is a feature vector containing the encoded EXIF tags of x(i).

MT-E consists of two sub-networks. The first sub-network

is the same as BL, which takes x(i) as input and regresses a

“generic” quality score ĝ(i). The second sub-network com-

prises a simple fully connected layer, which accepts o(i)

and produces an offset b̂(i) [26], with parameters denoted

by wE. The final quality prediction is computed by

q̂(i) = ĝ(i) + b̂(i), (2)

where we interpret b̂(i) as a learned bias added to the generic

score. When EXIF data are not present as in the case of

many Internet images, MT-E reduces gracefully to BL. We

train MT-E by optimizing a naı̈ve weighted sum of two ℓ1-

norm losses

ℓ2(wB, wE) = α1‖q − ĝ‖1 + α2‖q − q̂‖1, (3)

where α1 and α2 are non-negative task weightings, satisfy-

ing α1+α2 = 1. Since ĝ and q̂ have the same measurement

scale, we simply set α1 = α2 = 0.5.

5.3. Multi-Task Learning from Image Attributes

Besides subjective quality ratings, we also collect five

image attribute scores, including brightness, colorfulness,

contrast, noisiness, and sharpness. To explore the influence

of image attributes on image quality, we extend BL to MT-

A by learning to predict image attributes jointly. Built upon

the baseline model, we let the final fully connected layer

output six scalars, representing the overall image quality

and the degrees of image attributes, respectively. That is,

the six tasks share the computation up to the last fully con-

nected layer. The parameters for estimating image attributes

are represented by wA. We denote the input mini-batch by

{x(i), r(i), q(i)}mi=1, where r(i) is a five-dimensional vec-

tor that stores the ground truth image attribute scores of

x(i). Similarly, we use a naı̈ve weighted sum of six ℓ1-norm

losses to train MT-A

ℓ3(wB, wA) = β1‖q − q̂‖1 +
β2

5

5
∑

j=1

‖rj − r̂j‖1, (4)

where r̂j is an m-dimensional vector that stores the j-th im-

age attribute predictions of the current mini-batch. β1 and

β2 are non-negative task weightings, satisfying β1+β2 = 1.

By default we give the five attribute prediction tasks the

same weight. According to our subjective experiment, all

tasks are measured in the same scale. We take advantage of

this fact and sample β1 linearly from [0, 1].

5.4. Multi-Task Learning from Scene Labels

To explore the effectiveness of incorporating semantic

information into quality prediction, we train another model,

namely MT-S, using multi-task learning. Conceptually,

scene classification and quality assessment appear to be

competing tasks - the former requires feature representa-

tions to be insensitive to image quality degradation, while

the latter desires the opposite. To address this problem,

MT-S splits BL into two sub-networks carefully for the

two tasks. The input mini-batch samples are denoted by

{x(i), p(i), q(i)}mi=1, where p(i) is a nine-dimensional vector

with c non-zero entries, each set to 1/c corresponding to

the c ≥ 1 scene labels for x(i). For scene classification, we

let the last fully connected layer to produce nine continuous

activations ŝ(i), followed by softmax nonlinearity to convert

them into probabilities p̂(i). The cross entropy function is

then used as the loss

ℓ4(wS) = −
∑

i,j

p
(i)
j log p̂

(i)
j , (5)

where wS denotes the parameters associated with the scene

classification task. For quality regression, we use Eq. (1) as

the empirical loss.

It remains to combine the two losses for joint learning,

which is nontrivial as they live in substantially different
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scales. Grid-based manual tuning for a reasonable weight-

ing is expensive, especially in the context of deep learning.

Inspired by [10], we choose to learn the optimal weight-

ing as task-dependent uncertainty. In regression, we define

the likelihood function as a Laplace distribution with mean

given by the network output and an observation noise scalar

σ1:

p̂(q(i)|wB) ∼ Laplace(q̂(i), σ1). (6)

In classification, we define the likelihood as a scaled version

of the model output ŝ(i) through a softmax function [10]

p̂(y(i)|wS) ∼ Softmax

(

1

σ2
ŝ(i)

)

, (7)

where σ2 is a positive scalar, governing how uniform the

induced discrete distribution is and y(i) ∈ {1, . . . , 9}. It

is straightforward to show that the expected negative log

likelihood as the joint loss function can be approximated by

ℓ5(wB, wS) =
ℓ1(wB)

σ1
+

ℓ4(wS)

σ2
+m log σ1 +

m

2
log σ2.

(8)

The above loss discourages high task uncertainty through

the two log terms. MT-S can learn to ignore noisy tasks, but

is penalized for that [10]. Eq (8) also discourages very low

task uncertainty. For example, a low σ1 will exaggerate the

contribution of ℓ1. σ1 and σ2 are estimated along with the

model parameters {wB, wS}.

5.5. Performance Evaluation

For the baseline model BL and its variants, we adopt the

same training strategy, repeat the training processes for five

times, and report the average results to reduce any bias in-

troduced during training. Specifically, we randomly sam-

ple 80% of the images in SPAQ for training and leave the

rest for testing. The backbone ResNet-50 [8] is initialized

with the pre-trained weights for object recognition on Ima-

geNet [28]. We set the mini-batch size to 16 and the epoch

number to 30. We use the Adam stochastic optimization

package [13] with the initial learning rate of 10−3 and a de-

cay factor of 0.1 for every 10 epochs. The input images are

randomly cropped to 224×224×3. For the first 10 epochs,

we only train the final fully connected layers by freezing the

rest parameters in the networks. For the next 20 epochs, we

fine-tune the whole networks by optimizing the respective

losses.

During testing, we crop 224 × 224 × 3 patches from a

test image with a stride of 112. The final quality and at-

tribute scores are computed by averaging all patch predic-

tions. The dominant scene class is determined by majority

vote among all top-1 predictions, which is considered cor-

rect if it matches one of multiple ground truth labels.

We compare the proposed methods with seven existing

BIQA models, including BRISQUE [22], DIIVINE [24],

CORNIA [39], QAC [38], ILNIQE [40], FRIQUEE [6], and

DB-CNN [41]. These cover a wide range of design philoso-

phies, including NSS-based [6, 22, 24, 40], codebook-

based [38, 39], and DNN-based [41] models. The imple-

mentations of the competing models are obtained from the

respective authors. We re-train BRISQUE, FRIQUEE, and

DB-CNN using the same training set. As for DIIVINE and

CORNIA, we directly use the learned models due to the

lack of publicly available training codes and the complexity

of reproducing the training procedures. Note that QAC [38]

and ILNIQE [40] do not require MOSs for training.

Experimental results are shown in Table 4, from which

we have several interesting observations. First, BIQA

models designed for synthetic distortions (e.g., QAC [38]

and DIIVINE [24]) generally do not work well for re-

alistic camera distortions, which is no surprise because

there is a significant discrepancy between the two data

distributions. Second, verified on the LIVE Challenge

Database [5], FRIQUEE [6] delivers superior performance

on SPAQ, which verifies the effectiveness of the handcrafted

features at capturing the characteristics of realistic distor-

tions. Third, BRISQUE [22] also obtains comparable per-

formance, suggesting that the locally normalized pixel in-

tensities may reveal useful attributes of realistic distortions.

Fourth, by bilinearly pooling two sets of features, DB-

CNN [41] outperforms all BIQA approaches, including the

proposed BL based on ResNet-50. This suggests that DNNs

successfully learn hierarchical features sensitive to realistic

distortions, and that a more advanced backbone (such as

DB-CNN) offers additional performance gains. Finally, the

performance of the proposed baseline and its variants are

among the best, verifying our training and multi-task learn-

ing strategies.

Now, we take a close look at the multi-task learning re-

sults. When we add EXIF tags as additional inputs, MT-

E achieves a significant improvement compared with BL.

This emphasizes the importance of EXIF data to quality

prediction of smartphone captured images, which, however,

has not been paid much attention by the IQA community.

Next, jointly predicting image attributes positively impacts

the accuracy of quality prediction, and the results are ro-

bust to different task weightings (see Table 5). In addition,

the predicted attribute scores by MT-A have high correla-

tions with MOSs, as shown in the second column of Ta-

ble 2. This indicates that the five image attributes play key

roles in determining image quality, and the MT-A model

has learned the inherent relationships between image at-

tributes and the overall quality. Lastly and perhaps more

interestingly, we observe improved performance of quality

prediction in MT-S when jointly trained with scene classi-

fication. From Table 6, we find that the approximately op-
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Model
QAC DIIVINE CORNIA ILNIQE BRISQUE FRIQUEE DB-CNN

BL MT-E MT-A MT-S
[38] [24] [39] [40] [22] [6] [41]

SRCC 0.092 0.599 0.709 0.713 0.809 0.819 0.911 0.908 0.926 0.916 0.917

PLCC 0.497 0.600 0.725 0.721 0.817 0.830 0.915 0.909 0.932 0.916 0.921

Table 4. Average SRCC and PLCC results of our methods across five sessions against seven BIQA models on SPAQ.

Task weights
SRCC PLCC

β1 β2

0.9 0.1 0.917 0.919

0.8 0.2 0.917 0.918

0.7 0.3 0.917 0.918

0.6 0.4 0.916 0.917

0.5 0.5 0.916 0.916

Table 5. Average SRCC and PLCC results of MT-A across five

sessions as a function of task weighting. The default setting is

highlighted in bold.

Splitting position SRCC PLCC Accuracy

Conv1 0.915 0.918 0.702

Conv10 0.916 0.918 0.687

Conv22 0.916 0.919 0.673

Conv40 0.917 0.921 0.673

Conv49 0.915 0.916 0.670

Table 6. Average SRCC, PLCC and accuracy results of MT-S

across five sessions as a function of splitting positions. Conv# in-

dicates the splitting happens right after the #-th convolution layer

and there are a total of 49 convolution layers in MT-S.

timal splitting for quality regression is at the 40-th convo-

lution layer. However, the scene classification task prefers

to split at the first convolution layer (measured by classi-

fication accuracy), which suggests two separate networks

without sharing weights. This provides indirect evidence

that the two tasks compete with each other. Nevertheless,

MT-S is able to exploit semantic information to boost the

quality prediction performance. These insightful findings

inspire further research on how to extract semantic infor-

mation (e.g., in the form of dense semantic segmentation

maps) and how to incorporate it into IQA, with the goal of

benefiting both tasks.

6. Conclusion

We build so far the most comprehensive database for

perceptual quality assessment of smartphone photography,

where each image is attached with rich annotations, includ-

ing not only quality ratings (in the form of MOSs), but also

a series of EXIF, attribute, and semantic information. In

SPAQ, 1, 000 images are captured repeatedly by different

smartphones of the same scenes, facilitating head-to-head

comparisons of smartphone cameras.

We also construct four BIQA models using DNNs to ex-

ploit the influence of EXIF tags, image attributes, and high-

level semantics on perceived quality of smartphone pic-

tures. Our results suggest that all such side information may

be useful in improving prediction accuracy of the BIQA

models. We believe that the current database, together with

the proposed DNN-based computational models, lay the

groundwork for the development of next-generation BIQA

methods for smartphone photography, which in turn will

impact the future design of smartphone cameras and the in-

tegrated computational photography systems.
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