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Abstract—In many science and engineering fields that require computational models to predict certain physical quantities, we are

often faced with the selection of the best model under the constraint that only a small sample set can be physically measured. One such

example is the prediction of human perception of visual quality, where sample images live in a high dimensional space with enormous

content variations. We propose a new methodology for model comparison named group maximum differentiation (gMAD) competition.

Given multiple computational models, gMAD maximizes the chances of falsifying a “defender” model using the rest models as

“attackers”. It exploits the sample space to find sample pairs that maximally differentiate the attackers while holding the defender fixed.

Based on the results of the attacking-defending game, we introduce two measures, aggressiveness and resistance, to summarize the

performance of each model at attacking other models and defending attacks from other models, respectively. We demonstrate the

gMAD competition using three examples—image quality, image aesthetics, and streaming video quality-of-experience. Although these

examples focus on visually discriminable quantities, the gMAD methodology can be extended to many other fields, and is especially

useful when the sample space is large, the physical measurement is expensive and the cost of computational prediction is low.

Index Terms—Model comparison, gMAD competition, image quality, image aesthetics, streaming video quality-of-experience

Ç

1 INTRODUCTION

IN many science and engineering fields, we desire to con-
struct computational models that can predict certain mea-

surable physical quantities. A common constraint we are
often faced with is that the physical measurement process is
costly. As a result, only a small number of samples can be
measured, relative to the large sample space within which
the computational models attempt to make predictions. This
casts major challenges to the validation, comparison, and
improvement of the computational models. One such exam-
ple is the prediction of perceptually discriminable quantities
such as image quality [1], where multiple computational
models for image quality prediction are available and we are
askedwhich one performs the best.

Model comparison has been a long-standing prob-
lem [2]. A common theme of conventional direct model
comparison methods is to prepare a number of samples
from the sample space, collect physical measurements as

the ground-truth, and select the model that best fits the
ground-truth measurements in terms of certain statistical
criteria. Such criteria include statistics on (1) prediction
accuracy, e.g., the mean squared error (MSE) [3] and the
Pearson’s linear correlation coefficient [4] between model
predictions and ground truths; (2) prediction mono
tonicity, e.g., the Spearman’s rank correlation coefficient
(SRCC) [4] between model predictions and ground
truths; and (3) prediction consistency, e.g., the outlier
ratio that accounts for the percentage of unreasonable
predictions. Assume the evaluation is independent,
meaning that the models have never seen the test sam-
ples, then such statistics provide a basis for comparing
computational models on a given set of samples.

There are two interrelated problems of direct model com-
parisonmethods. First, it is commonly believed unfair to com-
pare models with different complexities solely by their
goodness of fit [5]. The principle of Occam’s razor [6] suggests
that for equal goodness of fit, a simpler model is better. Many
model comparison approaches that incorporate a simplicity
measure have been proposed, including the Akaike informa-
tion criterion [5], the shortest data description [7], and the
Bayesian information criterion [8]. Regardless of whether the
heuristic of picking the simpler model or the Occam’s razor is
well justified, measuring the complexity of a model is a diffi-
cult problem by itself. The most intuitive idea is to count the
number of parameters, but even a single continuous-valued
parameter contains an infinite amount of information. An
alternative measure is the description length, which depends
on the description method, and the absolute shortest descrip-
tion, i.e., the Kolmogorov complexity [9], is not computable.
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Thus a question that follows is whether the complexity in
computing the description length should be counted as part
of the model complexity. Moreover, how to strike a right bal-
ance between goodness of fit and simplicity is a difficult ques-
tion to answer and could be application dependent. In
addition, recent studies of deep neural networks suggest that
deeper networks with a gigantic number of parameters could
generalize better than shallower networks with a smaller
number of parameters [10], adding more complications to
model comparison methods that incorporate complexity
measures.

Second, there is often a major conflict between the large
scale (and possibly high dimensionality) of the sample space
and the limited scale of the affordable physical measure-
ment. For example, consider the space of all visual images.
This sample space is of the same dimension as the pixel num-
ber in the image, which is often in the order of millions. Col-
lecting ground-truth data via subjective testing is expensive
and time-consuming. Therefore, a typical “large-scale” sub-
jective experiment allows for a maximum of a few thousand
sample images to be examined, which are deemed to be
extremely sparsely distributed in the sample space. Model
comparison methods based on limited samples assume that
the samples are sufficiently representative, an assumption that
is often doubtful. The verification of such representativeness
is by itself a challenging problem without enough ground-
truth samples.

Conventional direct model comparisonmethods have two
features in common. First, they provide absolute assessments,
meaning that the evaluation of one model is independent of
other models. Model comparison occurs after such absolute
assessments have been performed on all competing models.
Second, all assessments attempt to prove amodel to be correct
by measuring its goodness of fit. An exception is the model
falsification methodology [11], where a model is rejected
when certain statistical criteria between the ground-truth
measurements and the model predictions are outside some
prescribed bounds. A significant departure from conven-
tional direct model comparison approaches started from the
MAximum Differentiation (MAD) competition method [12].
Given two computational models, MADworks by falsifying a
model using the second model in the most efficient way and
a model that is more difficult to be falsified is considered bet-
ter. To select samples that maximally discriminate between
the two models, MAD employs a gradient-based iterative
algorithm to synthesize a pair of samples that maximize/
minimize the responses of onemodel while holding the other
fixed. The procedure is repeated with the roles of the two
models switched. Only such extreme samples are subject
to physical measurement. MAD gives us an opportunity to
largely reduce the number of samples for testing because the-
oretically only one counterexample is sufficient to falsify
amodel.

Nevertheless, several limitations ofMAD impede its wide
usage in practical applications. First, MAD relies on gradient
information of the two models to solve a constrained and
possibly nonconvex optimization problem. This is not plau-
sible for sophisticated computational models, whose gra-
dients are difficult to compute, if not impossible. Second,
MAD-synthesized samples may be highly unnatural [12],
whose practical implications on how to improve existing

models in real-world applications may be limited. Third, it is
difficult to control the synthesized samples to fall in any spe-
cific domain of interest, which may be a subset of the sample
space. Fourth, it applies to two models only and the exten-
sion to account for multiplemodels is nontrivial.

We aim to develop the principle behind MAD [12]
towards an efficient and practical methodology for compar-
ing multiple computational models of measurable physical
quantities. We name our method the group MAximum Dif-
ferentiation (gMAD) competition. When attempting to falsify
a model (denoted as the defender), we work with a large-scale
sample set without performing physical measurements. We
search for sample pairs that maximize/minimize the
responses of a group of other models (denoted by attackers),
while fix the responses of the defender. The attacks are opti-
mal in the sense that the defender is most likely to be falsified
by the attackers. gMAD runs this game among all models
until each and every of them has played the defender role
once. Psychophysical experiments on generated sample pairs
are then conducted. Moreover, we introduce the aggres-
siveness and resistance measures to quantify how aggressive
an attacker is at falsifying a defender and how resistant a
defender is at defending itself against an attacker, respec-
tively. The pairwise aggressiveness and resistance statistics
are aggregated into a global ranking. The gMAD competition
is readily extensible, allowing future models to be added
withminimal additionalwork.

To demonstrate gMAD in a practical setting, we apply it
to the field of image quality assessment (IQA) [1], [3] and
report the competition results on 16 IQA models. Careful
inspections of selected gMAD image pairs shed light on
how to improve existing IQA models and develop next-
generation models. We also explore gMAD in two more
applications—image aesthetics evaluation [13] and stream-
ing video quality-of-experience (QoE) prediction [14].

2 THE GMAD COMPETITION METHODOLOGY

2.1 Problem Formulation and a Toy Example

We assume a sample space S, upon which a physical quan-
tity q 2 R is measurable for any sample s 2 S. A group of
computational models fCigMi¼1 are also assumed, each of
which takes a sample s as input and makes a prediction
of qðsÞ. The goal is to compare the relative prediction perfor-
mance among all models with a limited number of physical
measurements.

The gMAD competition method works with a sample set
O ¼ fsigNi¼1 � S. gMAD selects the sample set O that covers
the domain of interest within the sample space S. A good
example is the natural image subset in the set of all possible
digital images. Only a very small number of samples are
selected by gMAD for physical measurements and thus
the size of O is not a major concern. As such, O can be
selected to densely cover the domain of interest.

We first illustrate the idea of the gMAD competition using
a toy example as shown in Fig. 1. We assume two models,
Model I and Model II, to predict a continuous quantity q,
which varies over an one-dimensional sample space. The
physical measurement of q is expensive at any sample point,
but the computation of model predictions is cheap. The pre-
dictions by Model I and Model II are shown in Fig. 1a, where
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we observe that the models generally agree with each other
but may make very different predictions at certain sample
points. The question is how to determine the better model
with a minimal number of samples being physically mea-
sured. gMAD aims to maximize the efficiency of falsifying
the models by letting them compete. The process is better
explained in a scatter plot (Fig. 1b) of Model I versus Model
II. The samples that have the same Model I response may
expect different Model II responses, among which we are
interested in two samples corresponding to the minimal and
maximal Model II responses, respectively. When we go
through the Model I axis, the pair with the maximum
response difference of Model II are selected, as Points A and
B in Fig. 1b. Similarly, the sample pair that maximize
the response difference of Model I for equal Model II
response are selected, as Points C and D in Fig. 1b. The two
sample pairs ðA;BÞ and ðC;DÞ are subject to physical

measurement. ðA;BÞ is the best counterexample that Model
II finds to falsify Model I. If the ground-truth qðAÞ and qðBÞ
are substantially different, it provides a strong case to falsify
Model I. Similarly, ðC;DÞ could falsify Model II. The out-
come of the test falls in one of the three cases. In the first case,
one model is falsified and the other is not; a clear winner is
obtained. In the second case, no model is falsified, indicating
that the two models have strong agreement with each other
and cannot be differentiated. In the third case, both models
are falsified. Although there is no clear winner, the results
may help us identify model problems and suggest ways to
combine them into a single better model.

2.2 gMAD Competition Method

We summarize the gMAD competition procedure below.

� Step 1. Apply allM models to all samples in O to cre-
ate a model prediction matrix P 2 RM�N , where the
entry pij is the prediction of qðsjÞ given by Ci.

� Step 2. Choose C1 as the defender (i ¼ 1). The rest
M � 1models are the attackers.

� Step 3. Divide the samples into K bins based on pi

(the i-th row), indexed by k 2 f1; 2; � � � ; Kg. Initialize
k to 1.

� Step 4. Group the samples in the k-th bin to a subset
Oik, which are considered to have similar responses
of the defender Ci.

� Step 5. Choose Cj (j 6¼ i) as the current attacker.
� Step 6. Within Oik, find a pair of samples ðslijk; suijkÞ

that correspond to the minimal and maximal
responses of Cj. This extremal pair is referred to as
the gMAD counterexample suggested by the
attacker Cj, attempting to falsify the defender Ci at
the level k.

� Step 7. Choose another model Cj as the attacker and
repeat Step 6 until allM � 1 attackers are exhausted.

� Step 8. Set k ¼ kþ 1 and repeat Steps 4-7 until all lev-
els are exhausted (k ¼ K).

� Step 9. Choose the next model Ci as the defender by
setting i ¼ iþ 1 and repeat Steps 3-8 until all models
are exhausted (i ¼ M).

� Step 10. Perform physical measurements on the
selected gMAD sample pairs.
– Case 1. Record 2MðM � 1ÞK physical measure-

ments for allMðM � 1ÞK sample pairs.
– Case 2. For the defender Ci and the attacker Cj,

find the pair ðslij; suijÞ ¼ ðslijk? ; suijk? Þ, where

k
? ¼ argmax

k2f1;2;���;Kg
qðsuijkÞ � qðslijkÞ
��� ���: (1)

Record 2MðM � 1Þ physical measurements for
MðM � 1Þ extremal pairs.

� Step 11. Conduct statistical analysis (Section 2.3) on
the physical measurements for model comparison.

In Step 10, two physical measurement processes are pre-
sented. In the first case, the defender is attacked by every
attacker at every response level, while in the second case, the
defender is attacked once by each attacker at the most differ-
entiable response level. The specific usage of the two cases is
application dependent.

Fig. 1. A toy example of the gMAD competition. (a) Predictions by Model
I and Model II. (b) Plot of Model II against Model I. (A, B) and (C, D) are
the gMAD sample pairs subject to physical measurement.
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2.3 Data Analysis Method

Each gMAD sample pair is associated with two models. We
first compare the models in pairs and aggregate the pairwise
statistics into a global ranking via rank aggregation tools [15].
We introduce the notions of aggressiveness and resistance. The
aggressiveness aij measures how aggressive the attacker
model Ci is at falsifying the defender model Cj and is com-
puted by

aij ¼
PK

k¼1 wjk�qijkPK
k¼1 wjk

; (2)

where �qijk describes the preference to the sample suijk over s
l
ijk

selected from the k-th subset with Ci and Cj being the
attacker and the defender, respectively. �qijk is obtained
through the physical measurements and the specific
approach could be application dependent (examples given
in Sections 3 and 4). A higher �qijk suggests qðsuijkÞ is clearly
larger than qðslijkÞ and vice versa. When �qijk is close to 0,

qðsuijkÞ and qðslijkÞ are difficult to differentiate. wjk is the num-

ber of samples in the k-th subset, acting as a weight factor. aij
is expected to be non-negative with a larger value indicating

stronger aggressiveness of Ci over Cj. However, it may be

negative in theory, meaning that the order of the sample pair

selected by Ci contradicts the physical measurements. In

other words, a negative aij reveals a strong failure case of Ci.

The pairwise aggressiveness statistics of all models form an

aggressivenessmatrixA.
The resistance rij measures how resistant the defender

model Ci is to be defeated by the attacker model Cj and is
computed by

rij ¼
PK

k¼1 wikð1� j�qjikjÞPK
k¼1 wik

: (3)

A higher rij indicates stronger resistance of Ci against Cj.
The pairwise resistance statistics of all models form a resis-
tance matrix R.

The pairwise comparison results may be aggregated into
a global ranking via the maximum likelihood method for
multiple options [15]. Let mx ¼ ½mx

1 ;m
x
2 ; � � � ;mx

M � 2 RM be the
global ranking score vector, where x 2 fa; rg. We maximize
the log-likelihood of mx

argmax
mx

X
ij

xijlog Fðmx
i � mx

j Þ
� �

subject to
X
i

mx
i ¼ 0;

(4)

where Fð�Þ is the standard normal cumulative distribution
function (CDF). The constraint

P
i m

x
i ¼ 0 is added to resolve

the translation ambiguity. Other constraints such as setting
the first score to zero mx

1 ¼ 0 are also applicable. The optimi-
zation problem in (4) is a convex one and enjoys efficient
solvers. When M ¼ 2, the maximum likelihood estimate
reduces to the Thurstone’s law [16] and has a closed form
solution (assumingmx

1 þ mx
2 ¼ 0)

mx
1 ¼ �mx

2 ¼ F�1 x12

x12 þ x21

� �
; (5)

whereF�1ð�Þ is the inverse CDF of the standard normal. The
pairwise resistance statistics can be aggregated in a similar
fashion. Other ranking aggregation algorithms such as
hodgeRank [17] and ranking by eigenvectors [18] may also
be applied.

The aggregated aggressiveness and resistance measures
ma
i and mr

i represent two different aspects of the model com-
petitiveness. ma

i summarizes the success of a model as an
attacker. A larger ma

i means the model is better at finding test
samples to falsify other models. mr

i describes the success of a
model as a defender. A larger mr

i means the model is more
difficult for other models to find failure cases. ma

i or m
r
i does

not have theoretical advantage over one another and both
measures are useful. In practice, a model of stronger aggres-
siveness presumably should also have stronger resistance,
but in theory, they are not necessarily correlated. It would be
interesting to observe the cases when ma

i and mr
i disagree.

One such example is when a model offers highly accurate
predictions (consistent rankings) on most samples in the
sample space, but performs poorly on a small percentage of
corner cases, where the competing models perform well. In
this case, the model has strong aggressiveness to attack other
models (using the samples it predicts accurately), but is vul-
nerable as a defender (being easily defeated by other models
using the corner cases). Therefore, the disparity between ma

i

and mr
i of a model is highly insightful to reveal the defects of

a generally goodmodel.

2.4 Discussion

The toy example in Section 2.1 is a simplified demonstration
of the gMAD competition. In real-world applications, the
samples could live in a much higher dimensional space, the
number of models under competition could be much larger,
and the domain of interest in the sample space could vary
according to specific applications. In summary, we mention
several useful features of the gMAD competition. First, it is
straightforward and flexible to apply gMAD to sample sets
tuned for specific applications. Second, the number of sam-
ple pairs for physical measurements depends on the model
number only and is independent of the sample size. As a
result, gMAD is an ideal fit in the applications, where the
physical measurement is expensive but the computational
prediction is cheap. In such scenarios, gMAD encourages to
expand the sample set to cover as many cases as possible.
Third, each gMAD sample pair is associated with two mod-
els. The defender believes that the pair would produce the
same response q while the attacker suggests that they are
very different. Fourth, it is cost-effective to add new models
to the competition. No change is necessary for the current
gMAD pairs. The only additional work is to select a total of
2MK (Case 1 of Step 10) or 2M (Case 2 of Step 10) new sam-
ple pairs for physical measurements.

3 APPLICATION TO IQA MODELS

In this section, we apply the gMAD competition to compu-
tational models of perceived image quality [20].

3.1 Background

Digital images undergo many transformations in their
lifetime [21], any ofwhichmay introduce distortions, resulting
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in visual quality degradation [3]. Being able to automatically
predict the perceived image quality by humans is of funda-
mental importance in image processing and computer vision.
Depending on the availability of a distortion-free reference
image, computational IQA models may be categorized into
full-reference (FR), reduced-reference (RR) and no-reference
(NR) methods, where the reference image is fully, partially,
and completely not accessible, respectively.

Depending on how test images are presented to human
subjects, subjective testing for collecting ground-truth image
quality measurements may be roughly classified into three
categories: the single-stimulus method, the paired compari-
sonmethod, and the multiple-stimulus method [22]. In a sin-
gle-stimulus experiment, one test image is shown at a time
and is given ratings of image quality independently. In a
paired comparison experiment, a pair of images are shown
simultaneously and the subjects are asked which image has
better quality. In a multiple-stimulus experiment, multiple
images are shown and the subjects rate them based on their
perceptual quality. Given n test images,OðnÞ evaluations are
needed for single-stimulus and multiple-stimulus methods,
and Oðn2Þ for paired comparison. Although the paired com-
parison method is often preferred to collect reliable subjec-
tive measurements, an exhaustive paired comparison is
impractical when n is large. Many methods have been pro-
posed to improve its efficiency. Four types of balanced sub-
set designs were developed in the 1950’s [23], among which
the square design became popular. An alternative method
was to randomly select a small subset of image pairs. It was
shown that at least OðnlognÞ distinct pairs are necessary for
large random graphs to guarantee the graph connectivity
and to achieve a robust global ranking [17]. In [24], a Swiss
competition principle was adopted with a decreased com-
plexity ofOðnlognÞ.

Computational IQA models are typically tested using
conventional direct model comparison methods on existing
small-scale image quality databases (e.g., LIVE [25] and
TID2013 [24]). The goodness of fit is usually measured by the

correlation between subjective mean opinion scores (MOS)
and objective model predictions. As previously discussed,
only a few thousand images can be evaluated by humans
due to the limited scale of affordable subjective testing.
Moreover, given the combination of reference images, distor-
tion types, and distortion levels, only a few dozen reference
images may be included. It is difficult to justify how the few
reference images can provide a sufficient representation of
real-world content variations. In addition, state-of-the-art
IQA models often involve supervised learning or manual
parameter adjustments to boost the performance on existing
databases. Therefore, it is questionable whether the reported
competitive performance can be generalized to the real-
world images with much richer content variations and qual-
ity degradations.

Wang and Simoncelli adopted MAD [12], [26] to compare
two FR-IQA models—the MSE and the structural similarity
(SSIM) index [27], and showed that MSE is more easily falsi-
fied by SSIM [12]. MAD relies on gradient computation in a
constrained optimization process to synthesize test images
and is not applicable to advanced IQA models, which are
often non-differentiable. Recently, Ma et al. introduced
three evaluation criteria [19], namely the pristine/distorted
image discriminability test (D-Test), the listwise ranking con-
sistency test (L-Test), and the pairwise preference consistency
test (P-Test) for IQA models, which do not call for subjective
testing. However, the preparations of these tests require refer-
ence images and degradation specifications [19].

3.2 Experimental Setup

3.2.1 Database

We choose the Waterloo Exploration Database [19] to consti-
tute the test sample set. It contains 4,744 high-quality natural
images and spans a great deal of image content, including
human, animal, plant, landscape, cityscape, still-life, and
transportation. Sample images are shown in Fig. 2. Four
distortion types—JPEG and JPEG2000 compression, white

Fig. 2. Sample images in [19]. (a) Human. (b) Animal. (c) Plant. (d) Landscape. (e) Cityscape. (f) Still-life. (g) Transportation.
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Gaussian noise contamination, and Gaussian blur—each
with five distortion levels are used to generate 94,880 dis-
torted images. As a result, the Exploration database contains
a total of 99,624 images, which is currently the largest one
used by the IQA community. The database focuses on the
four aforementioned distortion types because many state-
of-the-art IQA models declare themselves for successfully
handling them [28], [29], [30], [31], [32] on small-scale IQA
databases. Whether these models survive from the gMAD
competition on the Exploration database provides strong
evidence of their generalizability in the real world.

3.2.2 Computational IQA Models

A total of 16 computational IQA models are selected to par-
ticipate in the gMAD competition to cover a wide variety of
IQA methodologies with emphasis on NR models. These
include FR models 1) PSNR, 2) SSIM [27], 3) MS-SSIM [33],
4) FSIM [34], and NR models 5) BIQI [28], 6) BLINDS II [35],

7) BRISQUE [36], 8) CORNIA [29], 9) DIIVINE [37], 10) IL-
NIQE [38], 11) LPSI [39], 12) M3 [40], 13) NFERM [41], 14)
NIQE [30], 15) QAC [42] and 16) TCLT [43]. The gradients of
most models are extremely difficult to compute or approxi-
mate, therefore limiting the pairwise comparison using
MAD [12]. The implementations of all models are obtained
from the original authors. For IQAmodels that involve train-
ing, we use all images in the LIVE database [25]. To make a
consistent comparison, we adopt a logistic nonlinear func-
tion to map all model predictions into the same perceptual
scale ½0; 100�with a higher value indicating better perceptual
quality.

We define six quality levels (K ¼ 6) evenly spaced on the
quality scale with a good coverage from low- to high-quality.
The quality range for each level is one standard deviation
(std) of MOSs in LIVE [25] so as to guarantee that the images
in the same level have similar quality by the defender model.
The attacker models then search for gMAD image pairs from
the six levels, as described in Section 2. On the scatter plot,
finding a gMAD image pair corresponds to selecting points
that have the longest distance in a given row or column, as
exemplified in Fig. 3, where SSIM [27] competes with MS-
SSIM [33]. The corresponding image pairs are shown in
Fig. 4, from which we may obtain a first impression on their
relative performance in gMAD. Specifically, the images in
the first row of Fig. 4 exhibit approximately the same percep-
tual quality (in agreement with MS-SSIM [33]) and those
in the second row have drastically different perceptual qual-
ity (in disagreement with SSIM [27]). This suggests that
MS-SSIM is a solid improvement over SSIM. In the end, a
total of 16� ð16� 1Þ � 6 ¼ 1; 440 gMAD image pairs are
chosen for the subsequent subjective experiment.

3.3 Subjective Testing

A subjective user study is conducted in an office environ-
ment with a normal indoor illumination level. The display is
a true-color LCD monitor at a resolution of 2; 560� 1; 600
pixels and is calibrated in accordance with the recommenda-
tions of ITU-R BT.500 [22]. A customized MATLAB interface
is created to render an image pair at their exact pixel resolu-
tions but in random spatial order. A scale-and-slider applet
is used for assigning a quality score, as shown in Fig. 5. A
total of 31 na€ıve human subjects (16 males and 15 females) of
age 22 to 30, participate in the subjective experiment. All sub-
jects have a normal or correct-to-normal visual acuity. Sam-
ple image pairs (independent of the test pairs) are shown to

Fig. 3. gMAD image pairs from the Waterloo Exploration Database [19].
The image pair ðA;BÞ is selected by maximizing/minimizing SSIM while
holding MS-SSIM fixed. Similarly, ðC;DÞ is selected by maximizing/
minimizing MS-SSIM while holding SSIM fixed.

Fig. 4. gMAD image pairs between SSIM and MS-SSIM. Images (a)-(d)
correspond to points A-D in Fig. 3. (a) MS-SSIM = 30, SSIM = 53. (b)
MS-SSIM = 30, SSIM = 13. (c) SSIM = 30, MS-SSIM = 78. (d)
SSIM = 30, MS-SSIM = 13.

Fig. 5. User interface for subjective testing.
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the subjects in a training session to familiarize them with
image distortions and the experimental procedure. For each
gMAD image pair, the subjects can assign a score between
�100 and 100 to indicate their preference to either the left
image ½�100;�20� (labeled as “left is better”) or the right

image ½20; 100� (labeled as “right is better”). When the sub-
jects are uncertain about their decision, they can also assign a
score between ½�20; 20� (labeled as “uncertain”), where a
score of zero indicates completely neutral. The proposed soft
version of the paired comparison method better captures the
subjects’ confidence when expressing their preference. We
divide the experiment into four sessions, each of which is
limited to a maximum of 30 minutes. The subjects are asked
to take a five-minute break to minimize the influence of the
fatigue effect. All subjects participate in all sessions.

3.4 Data Analysis

We adopt the outlier detection and subject rejection algo-
rithm suggested in [22] to screen the raw subjective data.
Specifically, a score for an image pair is considered to be an
outlier if it is outside two stds for the Gaussian case or out-
side

ffiffiffiffiffi
20

p
stds for the non-Gaussian case. A subject is

removed if more than 5 percent of his/her evaluations are
outliers. As a result, one subject is rejected. Among all scores
given by the valid subjects, about 1.4 percent of them are
identified as outliers and are removed subsequently.

We average the subjective measurements of each gMAD
image pair and compute the pairwise aggressiveness and
resistance statistics for every pair of 16 IQA models. Fig. 6
shows the aggressiveness matrixA and the resistance matrix
R, where the higher value of an entry (warmer color), the
stronger aggressiveness or resistance of the corresponding
rowmodel against the columnmodel.

We aggregate the pairwise comparison results into a global
ranking via the maximum likelihood method for multiple
options. Fig. 7 shows the results, from which we have several
interesting observations. First, an IQA model with stronger
aggressiveness generally exhibits stronger resistance. Second,
FR-IQA models are generally better than NR-IQA ones,
which is not surprising because FR models make use of refer-
ence images. Third, the best performance is obtained by MS-
SSIM [33], which is a multi-scale version of SSIM [27] and
a significant improvement upon it. This suggests that multi-
scale analysis is beneficial to IQA. Fourth, CORNIA [29],
NIQE [30], and ILNIQE [38] perform the best among all
NR-IQA models. They are derived from perception- and dis-
tortion-relevant natural scene statistics, which map raw
images into a perceptually meaningful space for comparison.
Finally, machine learning-based IQA models, though out-
standing on small-scale IQA databases, generally do not

Fig. 6. Pairwise comparison results of the 16 IQAmodels. (a) Aggressiveness
matrix. (b) Resistance matrix. Each entry indicates the aggressiveness/resis-
tance of the row model against the column model. A�AT and R� RT are
drawnhere for better visibility.

Fig. 7. Global ranking results of the 16 IQA models.
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perform well in the current gMAD competition. This may be
because the training samples are not sufficient to represent
the population of real-world natural images and thus the risk
of overfitting is high.

3.5 Further Testing

The conventional direct model comparison method and the
proposed gMAD competition test different aspects of
computational models. The former evaluates the overall
goodness of fit, while the latter focuses on falsifying a model
in the most efficient way. They are complementary and are
not intended to replace one with the other. It is interesting to
observe how much they align with each other in terms of
model ranking performance in real-world applications. Pre-
sumably, a model that is outstanding in one testing method-
ology is likely to do well in another. Here, we test IQA
models on a small subject-rated database, to which both
model comparison methods are applicable, and compare
their ranking results. Specifically, we choose the CSIQ [44]
database, which contains 30 pristine-quality and 866 dis-
torted images with six distortion types and five distortion
levels. Each image is associated with a MOS, which spans
the range ½0; 1�with 1 indicating theworst perceptual quality.
We test the 16 IQA models using gMAD and the MSE
between model predictions andMOSs (a conventional direct
model comparison method). The subjective measurement
�qijk of a gMAD image pair is computed by the MOS differ-
ence between the two images.

We compare the global ranking results by the aggres-
siveness/resistance of gMAD and MSE, and find that they
are well correlated (an SRCC of 0.953/0.941), suggesting
general agreement between gMAD and the direct model
comparison method on CSIQ [44]. We also compare the
aggressiveness/resistance ranking on CSIQ with that on the
Waterloo Exploration Database [19] and observe an SRCC of
0.618/0.726. The performance discrepancymay be explained
by the large difference between the two databases [5] in
terms of their sizes and content variations. In general, gMAD
benefits from larger image sets of greater diversity, which
makes it easier to falsify an IQA model and to differentiate
similar models.

To investigate the impact of the number of quality levels
K on the global ranking, we experiment with K 2 f1; 2; 3;
4; 5; 6g. For smallK values, we are only able to compare IQA
models on certain quality levels. For example, for K ¼ 1,
we choose the low-quality level to search for gMAD image
pairs. We adopt the global ranking with K ¼ 6 as the refer-
ence (Fig. 7) and compute the SRCC with other K values.
The results are shown in Table 1, where we see thatK has lit-
tle impact on the global ranking. The robustness of the

gMAD ranking with respect to K in our experiment may be
because a less competitive IQA model tends to perform
poorly at all quality levels. As a result, the results at limited
quality levels are representative for the full quality range.

4 MORE APPLICATIONS

The application scope of gMAD is broad in the sense that it
can be used to compare any group of computational models
that predict certain physical quantities. In this section, we
demonstrate the gMAD competition methodology with two
more examples of perceptually discriminable quantities—
image aesthetics and streaming video QoE.

4.1 Comparison of Image Aesthetics Models

Image aesthetics refers to the experience of beauty for sub-
jects when viewing an image [50]. It is generally believed
that image aesthetics is determined by a combination of low-
level features such as composition, lighting, color arrange-
ment and camera settings, and high-level semantics such as
simplicity, realism, content type and topic emphasis [51]. A
successful computational image aesthetics model plays an
important role in many fields such as image editing, image
retrieval, and personal photomanagement.

Computational image aesthetics assessment is not an
easy task. Most existing image aesthetics models only make
a binary decision on whether an image is a high-quality pro-
fessional photo or a low-quality snapshot [13], [50]. Conse-
quently, those models can only be tested on subject-rated
image aesthetics databases with binary annotations [51]. In
practice, the perceived aesthetics of real-world images is
much more diverse than just two levels, and thus continu-
ous-valued models are highly desirable.

Here we aim to apply gMAD to compare continuous-val-
ued aesthetics models. We first randomly select more than
170,000 images from ImageNet [45] as the test sample set,
whose content and aesthetics levels are diverse. Sample
images are shown in Fig. 8. We select four image aesthetics
models, including GIST+SVR [46], aesthetics-aware features
with SVR (AAF+SVR) [47], Jin16 [49], and Kong16 [48]. We
implement GIST+SVR and AAF+SVR algorithms by our-
selves, and the program packages of the other two models
are obtained from the original authors. For GIST [46], we
work with five scales, four orientations and 16 blocks, and
process RGB channels separately, resulting in a total of
5� 4� 16� 3 ¼ 960 features per image. Linear SVR [52] is
adopted with hyperparameters optimized for the best pre-
diction. For AAF, we choose the 1,323-dimensional features
proposed by Mavridaki and Mezaris [47], who implement a
set of generally accepted photographic rules such as simplic-
ity, colorfulness, sharpness, image pattern, and composition.
Linear SVR with the same hyperparameter optimization
strategy is adopted. Jin16 [49] is a convolutional neural net-
work (CNN)-based algorithm that inherits the VGG16 [53]
architecture and fine-tunes the weights using a weighted
MSE loss. Kong16 [48] is another CNN-based model that
fine-tunes the weights from AlexNet [54] using a weighted
sumof a regression loss, a pairwise ranking loss, and an attri-
bute loss. We train and validate GIST+SVR and AFF+SVR on
AVA [55]. The weights of Jin16 [49] and Kong16 [48] fine-
tuned on AVA [55] and AADB [48], respectively, are used

TABLE 1
SRCC Results betweenK ¼ 6 as the

Reference and OtherK Values

SRCC Aggressiveness Resistance

K ¼ 1 0.930 0.885
K ¼ 2 0.929 0.906
K ¼ 3 0.965 0.968
K ¼ 4 0.982 0.985
K ¼ 5 0.997 0.985
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for testing. Finally, we use theWaterloo IAADatabase [56] to
map all model predictions into the same perceptual space for
comparison.

We choose three aesthetics levels andgenerate 4� 3� 3 ¼ 36
gMAD image pairs. The subjective testing procedure is similar
to that described in Section 3.3 and we highlight the differences
here. 30 subjects, 18 males and 12 females, participate in the
experiment. Each subject takes about tenminutes tofinish rating
all the pairs. After running the outlier detection and subject
rejection algorithm, all subjects are valid and 2.1 percent of the
subjectivemeasurements are outliers.

We list the pairwise and global ranking results of the four
image aesthetics models in terms of aggressiveness and
resistance in Tables 2 and 3, respectively. It can be observed
that Jin16 [49], a CNN-based model, exhibits the strongest
aggressiveness and resistance. To take a closer look, we
show two gMAD image pairs, where Jin16 competes with
Kong16 [48] at the high-aesthetics level in Fig. 9. It is clear
that Jin16 successfully falsifies Kong16 by finding the image
pair in the first row, where image (a) looks more beautiful

than image (b) for most subjects. Meanwhile, Jin16 survives
from the attack by Kong16 as evidenced by similar aesthetics
of the image pair in the second row according to our sub-
jective testing. We conjecture that the superiority of Jin16
over Kong16 arises because 1) the backbone of Jin16—
VGG16 [53]—might be easier to generalize to novel tasks
than AlexNet [54] used in Kong16; 2) the weighted loss that
offsets the aesthetics level imbalance in Jin16 hasmore poten-
tials to improve the performance than adding the pairwise
ranking and attribute losses in Kong16. Moreover, it is not

TABLE 2
Pairwise Comparison Results of Image Aesthetics Models in the gMAD Competition

Aesthetics
model

Aggressiveness Resistance

GIST+SVR AAF+SVR Kong16 Jin16 GIST+SVR AAF+SVR Kong16 Jin16

[46] [47] [48] [49] [46] [47] [47] [49]

GIST+SVR — 0.216 0.103 0:031 — 0.686 0.713 0.541
AAF+SVR 0.314 — 0.182 0.160 0.662 — 0.708 0.534
Kong16 0.287 0.292 — 0.299 0.741 0.648 — 0.422
Jin16 0.459 0.466 0.578 — 0.934 0.810 0.701 —

Row model: attacker. Column model: defender.

TABLE 3
Global Ranking Results of Image Aesthetics Models in gMAD

Aesthetics model Aggressiveness Resistance

GIST+SVR [46] �0:577 �0:097
AAF+SVR [47] �0:189 �0:064
Kong16 [48] 0.145 �0:098
Jin16 [49] 0:621 0:260

Fig. 9. gMAD competition between Jin16 [49] and Kong16 [48] at the
high-aesthetics level. (a) Best Jin16 for fixed Kong16. (b) Worst Jin16
for fixed Kong16. (c) Best Kong16 for fixed Jin16. (d) Worst Kong16 for
fixed Jin16.

Fig. 8. Sample images from ImageNet [45] used for the gMAD competition of image aesthetics models. (a)-(h) Images with increasing degrees of
perceived aesthetics according to our subjective testing.
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surprising that the general-purpose feature representation
GIST [46] for holistic scene modeling is defeated by AAF [47]
under the same training configuration. After all, the AAF
representation is motivated by years of practices of profes-
sional photographers and thus is more relevant to image aes-
thetics. Finally, the hand-crafted AAF representation is
slightly better in terms of resistance than the end-to-end opti-
mized Kong16 [48]. This suggests that more training data,
novel network architectures, and advanced optimization
techniques are needed to learn more robust end-to-end aes-
thetics models.

4.2 Comparison of Streaming Video QoE Models

Video streaming services have gained increasing popularity
due to the fast deployment of network infrastructures and
the proliferation of smart mobile devices. Being able to pre-
dict the QoE of end users is of great importance because it
plays a critical role in the user choices of video streaming
services [57]. Three major factors affect the QoE for HTTP
adaptive streaming (HAS) [58], [59]. The first is the presenta-
tion quality of video segments encoded in different bitrates,
spatial resolutions, and frame rates. The second is the stalling
events due to poor or unstable network conditions, character-
ized by their frequencies and time durations. The third is the
switchings of video segments of different bitrates, spatial res-
olutions, and frame rates from one time segment to another,
adapting to varying network conditions. Developing compu-
tational QoE models that jointly consider these factors and
their interactions is a challenging task. In recent years, many
QoEmodels have been developed [14], [60], but most of them

have not been calibrated against subjective data with suffi-
cient video content variations and distortion types. Note that
the largest subject-rated streaming video database so far only
contains hundreds of videos [61].

We build a large-scale streaming video database as the
playground for the gMAD competition of computational QoE
models. Specifically, we first download 50 high-quality 4K
videos with 24-30 frames per second (fps) from the Internet,
which carry a Creative Commons license. We down-sample
all videos to 1; 920� 1; 080 to further damppossible compres-
sion artifacts. They are selected to cover sufficient content var-
iations and motion patterns. Sample frames of representative
videos are shown in Fig. 10. From each video we extract a ten-
second video clip, which is further divided into five non-
overlapping two-second segments. Each segment is encoded
using H.264 into five representations selected from the
Netflix’s encoding ladder [62], representing “bad”, “poor”,
“fair”, “good”, and “excellent” presentation quality, respec-
tively. The details of the encoding ladder are given in Table 4.
After that, we prepend a stalling event to each encoded seg-
ment with a time duration of zero, two, or four seconds,
representing “no”, “short”, and “long” stalling, respectively.
We concatenate all possible combinations of two-second seg-
ments from the same source content along with the stalling
events, resulting in a total of 35 � 55 � 50 ¼ 37; 968; 750 test
video clips.

We let three computational QoE models play the gMAD
game. These are Liu12 [63], Yin15 [64], and SQI [58].
Liu12 [63] adopts the bitrate and the stalling percentage as
two features. On top of Liu12, Yin15 [64] adds two more
features—the switching magnitude and the initial buffering
duration. Linear regression is used for the two models.
Instead of using the bitrate as the indication of presentation
quality, SQI [58] resorts to advanced video quality models
such as SSIMplus [65] to predict presentation quality and
considers the interactions between video presentation quality
andplayback stalling experiences.Wemake use of theWater-
loo QoE Database [58] and map all model responses to the
same perceptual scale.

We choose three QoE levels and generate 3� 2� 3 ¼ 18
gMAD video pairs. 30 subjects participate in the subjective
experiment. Two video clips in the same pair are played

Fig. 10. Sample frames from the proposed streaming video database for the gMAD competition of QoE models. (a) YellowStone: natural, high
motion. (b) StreetDance: outdoor, high motion. (c) SplitTrailer: human, high motion. (d) CSGO: animation, high motion. (e) UCLY: indoor, slow
motion. (f) WildAnimal: animal, slow motion. (g) Rose: plant, slow motion. (h) Food: still-life, slow motion.

TABLE 4
Encoding Ladder of Video Clips. kbps: kB per

Second

Representation Bitrate (kbps) Resolution

Bad 235 320� 240
Poor 560 512� 384
Fair 1,050 640� 480
Good 2,350 1; 280� 720
Excellent 5,800 1; 920� 1; 080
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consecutively but in random order. Subjects are allowed to
replay them until they are confident about their judgment on
the relative QoE for the two video clips. Each subject takes
about 20 minutes to finish the experiment. After subjective
data screening, no subject is rejected and 3:0% of the subjec-
tivemeasurements are identified as outliers.

The pairwise and global ranking results of Liu12 [63],
Yin15 [64], and SQI [58] are listed in Tables 5 and 6, respec-
tively. It appears that SQI outperforms the other two QoE
models in terms of both aggressiveness and resistance. We
also show the gMAD video pairs between SQI and Yin15 in
Fig. 11,wherewe find that SQI defeats Yin15 at all QoE levels.
For example, at themid-QoE level in Fig. 11a, Yin15 regards a
video sequence of smooth playout (small quality oscillation
between excellent and good quality without any stalling) to
have similar QoE to a video sequence significantly inter-
rupted bymultiple stalling events. The better performance of
SQI may arise from that SQI replaces the bitrate with SSIM-
plus [65], which is a human visual system inspired model
and is in close agreementwith human perception of presenta-
tion quality. Taking into account the interactions between
presentation quality and stalling events may be another
important ingredient for SQI to win the competition. How-
ever, SQI does not consider the quality switching effect to
the overall QoE. We believe a joint modeling of video
presentation quality, stalling events, and switchings is a
potential direction to further improve SQI. Compared to
Liu12, Yin15 adds two more features, attempting to model
the switching and initial buffering effects. Unfortunately, we
observe a performance degradation through the gMAD com-
petition. This may be because Yin15 captures the switching
effect with an oversimplified measure—the absolute differ-
ence between the bitrates of two consecutive video segments,
which may in turn hamper the overall performance. Specifi-
cally, the bitrate and its difference exhibit a strong nonlinear-
ity and (possibly non-monotonicity) to the overall QoE.
Incorporating it into the model linearly may not be an app-
ropriate choice. In addition, the results in [59] show that users
have clearly different behaviors when experiencing positive
and negative adaptations. In other words, the switching

directionmatters, but the absolute operation in Yin15 ignores
such information. In summary, modeling user experience
when viewing streaming videos is challenging and the cur-
rent models only work to some degrees. A complete treat-
ment of the aforementioned three factors is desirable to better
predict streaming videoQoE.

TABLE 5
Pairwise Comparison Results of QoE Models in the gMAD Competition

QoE model
Aggressiveness Resistance

Liu12 [63] Yin15 [64] SQI [58] Liu12 [63] Yin15 [64] SQI [58]

Liu12 [63] — 0.000 0.687 — 0.570 0.434
Yin15 [64] 0.430 — 0.077 0.636 — 0.223
SQI [58] 0.566 0.777 — 0.313 0.499 —

Row model: attacker. Column model: defender.

TABLE 6
Global Ranking Results of QoE Models

in the gMAD Competition

QoE model Aggressiveness Resistance

Liu12 [63] �0:106 0.010
Yin15 [64] �0:161 �0:112
SQI [58] 0:267 0:102

Fig. 11. gMAD competition between Yin15 [64] and SQI [58]. (a) Yin15 as
defender. (b) SQI as defender. Video playout sequences at different video
quality levels (as listed in Table 4) and the stalling events are represented
using different color bars. The gMAD competitions are performed at
high-, mid-, and low-QoE levels, respectively.
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5 CONCLUSION AND DISCUSSION

We propose a new methodology, namely the gMAD compe-
tition, for efficient comparison of computational predictive
models. Aiming for maximizing the speed of falsifying mod-
els, gMAD automatically searches from a large-scale sample
set for a small number of model-dependent sample pairs.
gMAD is particularly useful when the sample space is large,
the physical quantity being predicted is expensive to mea-
sure, and the model prediction is cheap to compute. Unlike
conventional direct model comparison approaches [3], [4],
[5], the number of physical measurements required by the
gMAD competition does not scale with the size of the sample
space and only depends on the number of competing mod-
els. This feature allows gMAD to exploit a sample set of arbi-
trary size with a low and manageable cost. gMAD also
provides two well-defined measures (aggressiveness and
resistance) to indicate the relative performance of computa-
tional models, through which useful insights may be gained
to design better models.

Although the current work demonstrates gMAD using
three perceptually discriminable quantities—image quality,
image aesthetics, and video QoE—there are a much wider
variety of scenarios that gMAD can come into play. To give a
few examples, these include comparisons of image/video
emotion predictors in the field of cognitive vision [50], the
relative attributes (sportiness and furriness) estimators in the
field of semantic image search [66], machine translation qual-
ity estimators in the field of computational linguistics [67],
and thermal comfort models in the field of thermal environ-
ment of buildings [68].

The current gMAD requires computationalmodels to pro-
duce continuous-valued responses. How to adapt gMAD to
account for discrete-valued models has great potentials to
impact other computer vision andmachine learning applica-
tions. For example, instead of building a database larger than
ImageNet [45] for testing, it is of great interest to see how
existing image classification algorithms behave in a discrete
version of gMAD setting. In addition, the current gMAD
requires computational models to be scalar-valued, mani-
festing themselves in predicting a measurable quantity. It is
interesting to extend gMAD to work with vector-valued
models, for example, to compare different feature represen-
tations in a computational vision task [69].
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