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Abstract— We propose a fast multi-exposure image fusion
(MEF) method, namely MEF-Net, for static image sequences
of arbitrary spatial resolution and exposure number. We first
feed a low-resolution version of the input sequence to a fully
convolutional network for weight map prediction. We then jointly
upsample the weight maps using a guided filter. The final
image is computed by a weighted fusion. Unlike conventional
MEF methods, MEF-Net is trained end-to-end by optimizing the
perceptually calibrated MEF structural similarity (MEF-SSIM)
index over a database of training sequences at full resolution.
Across an independent set of test sequences, we find that the
optimized MEF-Net achieves consistent improvement in visual
quality for most sequences, and runs 10 to 1000 times faster than
state-of-the-art methods. The code is made publicly available at
https://github.com/makedede/MEFNet.

Index Terms— Multi-exposure image fusion, convolutional
neural networks, guided filtering, computational photography.

I. INTRODUCTION

MULTI-EXPOSURE image fusion (MEF) provides a
cost-effective solution for high-dynamic-range (HDR)

imaging [1]. It takes an image sequence with different expo-
sure levels as input and produces a high-quality and low-
dynamic-range image, ready for display [2]. Research in MEF
has yielded a number of methods [2]–[8], which generate fused
images with faithful detail preservation and vivid color appear-
ance. This is mainly accomplished by a weighted summation
framework

Y =
K∑

k=1

Wk � Xk, (1)

where � denotes the Hadamard product. Wk and Xk represent
the k-th weight map and the corresponding exposure image,
respectively, Y is the fused image, and K is the number of
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exposures in the input sequence. Noticeable exceptions of the
framework are optimization-based methods [6], [8], where the
fusion process is supervised by a perceptual image quality
metric [9].

Despite the demonstrated success, the high resolution of
the exposure sequence captured by commercial cameras and
mobile devices poses a grand challenge to existing MEF meth-
ods, which may require extensive computational resources and
take seconds (or even minutes) to generate the fused results.
The situation becomes even worse with the increasing number
of exposures. Algorithm acceleration through code optimiza-
tion is possible [10], [11], but it may not generalize across
different MEF methods. Another general approach to accel-
erate an MEF method [12]–[14] is to downsample the input
sequence, execute the MEF operator at low resolution, and
upsample the fused image. One drawback of this approach is
that the MEF method never sees the high-resolution sequences
and therefore fails to fully reproduce the fine details, limiting
the visual sharpness of the fused images.

We aim to develop an MEF method for static scenes with
three desirable properties:

• Flexibility. It must accept input sequences of arbitrary
spatial resolution and exposure number.

• Speed. It must be fast, facilitating real-time mobile appli-
cations at high resolution.

• Quality. It must produce high-quality fused images across
a broad range of content and luminance variations.

To achieve flexibility, we utilize a fully convolutional net-
work [15], which takes an input of arbitrary size and pro-
duces an output of the corresponding size (known as dense
prediction). The network is shared by different exposed
images, enabling it to process an arbitrary number of expo-
sures. To achieve speed, we follow the downsample-execute-
upsample scheme and feed the network a low-resolution
version of the input sequence. Rather than producing the fused
image as in [6], [16], [17], the network learns to generate the
low-resolution weight maps in Eq. (1) and jointly upsample
them using a guided filter [18] for final weighted fusion.
By doing so, we take advantage of the smooth nature of
the weight maps and make use of the input sequence as the
guidance [19]. Directly upsampling the fused image is difficult
due to the existence of rich high-frequency information in
the high-resolution sequence and the lack of proper guidance.
To achieve quality, we integrate the differentiable guided
filter with the preceding network [19] and optimize the entire
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model end-to-end for the subject-calibrated MEF structural
similarity (MEF-SSIM) index [9] over a large number of
training sequences [6], [20]–[23]. Although most of our infer-
ence and learning is performed at low resolution, the objec-
tive function MEF-SSIM [9] is measured at full resolution,
which encourages the guided filter to cooperate with the
convolutional network, generating high-quality fused images.
Extensive experiments demonstrate that the resulting MEF-Net
achieves consistent improvement in visual quality compared
with state-of-the-art MEF methods for most sequences. More
importantly, MEF-Net runs 10 to 1000 times faster and holds
much promise for approximating and accelerating the MEF
methods that are computationally intensive.

II. RELATED WORK

In this section, we provide a brief overview of existing MEF
methods and general approaches for fast image processing,
with emphasis on previous ones that are closely related to our
work.

A. Existing MEF Algorithms

The Laplacian pyramid [24] proposed by Burt and Adelson
in 1983 has a lasting impact on image fusion research [25].
Combining with Gaussian [2], [3] or edge-preserving [4],
[7] filters, the Laplacian pyramid provides a convenient
multi-resolution framework to refine the weight map Wk ,
which carries perceptually important information of Xk .
Mertens et al. [2] adopted this framework and proposed one
of the first pixel-wise MEF methods, which keeps a good
balance between visual quality and computational complexity.
Since then, a great number of pixel-wise MEF methods [26]
have been developed, mainly to improve visual quality at
the cost of increasing computational complexity. Compared
to pixel-wise MEF, patch-wise methods generally produce
a smoother Wk that requires less post-processing, but bear
heavier computational burdens. Goshtasby [27] presented one
of the first patch-wise MEF methods. Ma and Wang [28]
extended the idea [27] and developed a structural patch decom-
position for MEF. Typical perceptual factors that contribute to
Wk include gradient [29], contrast [2], color saturation [2],
[7], entropy [27], structure [28], well-exposedness [2], [3], and
saliency [4].

B. Fast Image Processing

As mobile devices become people’s primary cameras to take
photos, there is a growing demand to accelerate image process-
ing operators for novel mobile applications such as photo
editing, face manipulation, and augmented reality. A good
case in point is bilateral filtering [30]–[32], which benefits
from years of code optimization, due to the ubiquity of
edge-preserving image processing. However, such acceleration
tricks may not generalize to other operators. A system-level
acceleration solution, friendly to mobile hardware, is to send
images to a cloud server, execute the image processing oper-
ator on the cloud, and send the processed images back [33].
Due to the large bitrate of high-resolution images, this may

introduce significant delays, especially when the network con-
dition is unstable. The downsample-execute-upsample scheme
is another general method for algorithm acceleration, which
suffers from two limitations. First, the underlying operator may
still be slow to run at low resolution. Second, it is difficult for
upsampling techniques to recover the high-frequency informa-
tion in the high-resolution images, especially when they are
of complex structures. Recently, due to efficient feed-forward
inference, convolutional networks [14], [19] have been used
to approximate and accelerate popular image processing oper-
ators, including edge-preserving filtering, detail manipulation,
non-local dehazing, and style transfer.

C. Closely Related Work

Our work is closely related to several previous methods.
Li et al. [4] first introduced guided filtering to MEF. The
weight map Wk was constructed based on pixel saliency and
spatial consistency measurements, and was refined by a guided
filter. Kou et al. [7] built their work upon [2] and replaced
Gaussian smoothing with gradient domain guided filtering.
The three components of the above two methods—weight
map construction, guided filtering, and weighted fusion—are
optimized separately (often through manual adjustment). Our
method is different from them by resorting to an end-to-end
solution, where the three components are jointly optimized in a
data-driven fashion. Rather than pre-defining a computational
graph for MEF, Ma et al. [8] formulated it as an optimization
problem

Yopt = arg max
Y

MEF-SSIM({Xk}, Y)

subject to 0 ≤ Y ≤ 255. (2)

Due to the nonconvexity of MEF-SSIM [9] and the high-
dimensionality of the optimization problem, a closed-form
solution is difficult. Therefore, a gradient-based iterative solver
is adopted [8], which is computationally expensive. Another
work closely related to ours is from Prabhakar et al. [6],
who trained a feed-forward convolutional network to solve
the optimization problem in (2). The method works reasonably
well on extreme situations, but does not achieve the flexibility,
speed, and quality we seek. We will show that the proposed
MEF-Net achieves higher quality, while being much faster and
more flexible.

Chen et al. [14] investigated a number of convolutional net-
work architectures in terms of their approximation accuracy,
speed, and compactness when accelerating image processing
operators. They found that a multi-scale context aggregation
network (CAN) characterized by dilated convolutions [34]
satisfies the three criteria and significantly outperforms prior
methods [13]. We will adopt CAN as our default network
architecture. Wu et al. [19] treated the guided filter as a group
of spatially-varying differentiable transformations and inte-
grated it with convolutional networks for end-to-end training.
Although their method [19] achieves superior performance in
some applications with relatively smooth outputs (e.g., style
transfer [35]), it cannot accurately approximate operators that
work with high-frequency image content (e.g., multi-scale tone
manipulation [36]). Our method circumvents this problem by
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Fig. 1. Schematic diagram of the proposed MEF-Net. The downsampled input sequence {Xl
k } is fed to CAN, where the main computation takes place. The

learned weight maps {Wl
k} are jointly upsampled to high resolution by the guided filter. The fused image is obtained by a weighted summation of {Xk} and

{Wk }.

applying the guided filter on Wk , which is smoother and easier
to upsample than Y.

III. MEF-NET

We describe MEF-Net, a flexible, fast, and high-quality
MEF method. MEF-Net consists of a bilinear downsampler,
a CAN, a guided filter, and a weighted fusion module. The
architecture is shown in Fig. 1. We first downsample an input
sequence {Xk} and feed CAN the low-resolution version {Xl

k}
to predict the low-resolution weight maps {Wl

k}. Taking {Wl
k},{Xl

k}, and {Xk} as inputs, we obtain the high-resolution weight
maps {Wk} using the guided filter, an operation also known as
joint upsampling in computer vision [37]. Finally, we compute
the fused image Y using Eq. (1). MEF-Net is end-to-end
trainable with the objective function MEF-SSIM [9] evaluated
at high resolution.

A. CAN for Low-Resolution Weight Map Prediction

The core module of MEF-Net is a convolutional network,
which transforms the low-resolution input sequence {Xl

k} to
the corresponding weight maps {Wl

k}. The network must
allow for {Xl

k} of arbitrary spatial size and exposure number,
and produce {Wl

k} of the corresponding size and number.
To achieve this, we make use of a fully convolutional network
to handle all exposures (i.e., images of different exposures
share the same weight generation network), which can be
efficiently implemented by allocating {Xl

k} along the batch
dimension. From a number of alternative networks [15], [38],
we select CAN [34], which has been advocated by
Chen et al. [14] and Wu et al. [19] for approximating image
processing operators. The key advantage of CAN is its large
receptive field without sacrificing spatial resolution. It grad-
ually aggregates contextual information at deeper layers and
accomplishes computation of global image statistics for better
image modeling. Table I specifies our CAN configuration.
It has seven convolution layers, whose responses have the same
resolution as the input. Similar to [14], we employ adaptive

normalization right after convolution

AN(Z) = λnZ + λ�
nIN(Z), (3)

where λn, λ
�
n ∈ R are learnable scalar weights, Z indicates the

intermediate representations, and IN(·) stands for the instance
normalization operator [39]. We choose not to use batch nor-
malization [40] here because the batch size (i.e., the number
of exposures) is usually small, which may introduce problems
during training due to inaccurate batch statistics estimation.
In addition, to better preserve the local structural information
of Xl

k [20], we adopt the leaky rectified linear unit (LReLU)
as the point-wise nonlinearity

LReLU(Z) = max(λr Z, Z), (4)

where λr > 0 is a fixed parameter during training. The output
layer produces Wl

k using a 1×1 convolution without adaptive
normalization and nonlinearity.

B. Guided Filter for High-Resolution Weight Map
Upsampling

The key assumption of the guided filter is a local linear
model between the guidance I and the filtering output Q [18]

Q(i) = aωI(i) + bω, ∀i ∈ ω, (5)

where i is the index of the guidance and ω is a local square
window with radius r . aω, bω are linear coefficients assumed
to be constant in ω and can be computed by minimizing the
reconstruction error

�(aω, bω) =
∑
i∈ω

(
(aωI(i) + bω − P(i))2 + λaa2

ω

)
, (6)

where P is the filtering input and λa is a regularization
parameter penalizing large aω [18]. In the context of MEF-Net,
we treat the low-resolution Wl

k and Xl
k as the input and the

guidance of the guided filter to obtain Al
k and Bl

k , respectively.
As in [18], [19], we replace the mean filter on Al

k and Bl
k ,

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on May 17,2020 at 14:31:51 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: DEEP GUIDED LEARNING FOR FAST MEF 2811

TABLE I

SPECIFICATION OF CAN IN MEF-NET FOR LOW-RESOLUTION WEIGHT MAP PREDICTION

Fig. 2. Demonstration of the learned weight map Ŵk . A brighter pixel in Ŵk indicates that the corresponding pixel in Xk contributes more to the fused
image Y. Ŵk shows a strong preference to high-contrast and well-exposed regions. (a) Source sequence “Corridor” along with the learned weight maps. (b)
Fused image by MEF-Net. Sequence courtesy of Jianrui Cai.

and bilinearly upsample them to the high-resolution Ak and
Bk . The high-resolution weight map Wk is computed by

Wk = Ak � Xk + Bk . (7)

Algorithm 1 summarizes the guided filter for joint upsampling
in MEF-Net, where fmean and f↑ denote box filtering and
bilinear upsampling, respectively. By interpreting the guided
filter as a group of spatially-varying differentiable transfor-
mations [19], we integrate it with the preceding CAN and
optimize MEF-Net end-to-end at full resolution. We may
apply the guided filter as a post-processing step without any
training, but it hurts the fusion performance as will be clear
in Section IV-B.

To stabilize gradients during training and to obtain consis-
tent results, we take the absolute values of {Wk} followed by
normalization such that they sum to one across exposures at
each spatial location

Ŵk(i) = |Wk(i)|∑K
k=1|Wk(i)|

. (8)

Fig. 2 demonstrates the learned weight maps {Ŵk} of the
source sequence “Corridor”, where a brighter pixel in Ŵk

indicates that the corresponding pixel in Xk contributes more
to the fused image Y. The learned Ŵk enjoys several desirable
properties. First, Ŵk is smooth with gentle transitions from
sharp to flat regions. Second, Ŵk prefers high-contrast and
well-exposed regions, both of which significantly impact the
perceptual quality of Y. Third, Ŵk reflects the global structure
of Xk and is beneficial for large-scale detail preservation. As a
result, the fused image appears natural without loss of details
and presence of artifacts.

Algorithm 1 Guided Filtering for Joint Upsampling in
MEF-Net

C. MEF-SSIM as Objective Function

In this subsection, we detail the MEF-SSIM index [9] as
the objective function for MEF-Net. Other perceptual quality
metrics for MEF such as [41], [42] may also serve the purpose.
Specifically, MEF-SSIM decomposes an image patch xk into
three conceptually independent components

xk = �xk − μxk � · xk − μxk

�xk − μxk �
+ μxk

= �x̃k� · x̃k

�x̃k� + μxk

= ck · sk + lk, (9)
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where � · � denotes the �2-norm. lk = μxk , ck = �x̃k�, and
sk = x̃k/�x̃k� represent the intensity, contrast, and structure
of xk , respectively [9].

The desired intensity of the fused image patch is defined by

l̂ =
∑K

k=1 wl (μk, lk) lk∑K
k=1 wl (μk, lk)

, (10)

where wl(·) is a weight function of the global mean intensity
μk of Xk and the local mean intensity lk of xk . wl(·) is
specified by a two dimensional Gaussian profile

wl (μk, lk) = exp

(
− (μk − τ )2

2σ 2
g

− (lk − τ )2

2σ 2
l

)
, (11)

where σg and σl are two photometric spreads, set to 0.2 and
0.5, respectively [5]. τ = 128 represents the mid-intensity
value for an 8-bit sequence. The desired contrast is determined
by the highest contrast in {xk}

ĉ = max
1≤k≤K

ck . (12)

The desired structure is computed by a weighted summation

ŝ = s̄
�s̄� , where s̄ =

∑K
k=1 ws (x̃k) sk∑K

k=1 ws (x̃k)
, (13)

where ws(·) = � · �∞ is an �∞-norm weight function.
Once l̂ , ĉ, and ŝ are determined, we invert the decomposition

to obtain the desired fused patch

x̂ = ĉ · ŝ + l̂. (14)

The construction of MEF-SSIM follows the definition of the
SSIM index [43]

S({xk}, y) = (2μx̂μy + C1)(2σx̂y + C2)

(μ2
x̂ + μ2

y + C1)(σ
2
x̂ + σ 2

y + C2)
, (15)

where μx̂ and μy denote the mean intensities of the desired
patch and a given fused patch, respectively. σx̂, σy, and σx̂y
denote the local variances of x̂ and y, and their covariance,
respectively. C1 and C2 are two small positive constants to
prevent instability. The local S values are averaged to obtain
an overall quality measure of the fused image

MEF-SSIM({Xk}, Y) = 1

M

M∑
i=1

S({Ri Xk}, Ri Y), (16)

where Ri is a matrix that extracts the i -th patch from the
image. The MEF-SSIM score ranges from 0 to 1 with a higher
value indicating better visual quality.

The vanilla version of MEF-SSIM [9] excludes the intensity
comparison and has been adopted by Prabhakar et al. [6] to
drive the learning of convolutional networks for MEF. In our
experiments, we find that optimizing MEF-SSIM without
intensity information is unstable, resulting in fused images
with a relatively pale appearance (see Fig. 6). The improved
version of MEF-SSIM [8] adds the intensity comparison in
Eq. (15) and directly works with color sequences. However,
it is likely to generate over-saturated colors in some situa-
tions [8]. To obtain more conservative fused images with little
artifacts, we choose to handle chroma components separately

as suggested in [6]. Specifically, we work with the Y’CbCr
format and evaluate MEF-SSIM only on the luma components
of {Xk} and Y. In other words, CAN in MEF-Net is optimized
to fuse the luma components. For the Cb chroma components,
we adopt a simple weighted summation suggested in [6]

b̂ =
∑K

k=1 wc(bk)bk∑K
k=1 wc(bk)

, (17)

where bk denotes the Cb chroma value at the k-th exposure
and wc(bk) = �bk − τ�1 is an �1-norm weight function. The
Cr chroma components can be fused in the same way. Finally,
we convert the fused image from Y’CbCr back to RGB.

D. Training

We collect a large-scale dataset for MEF-Net. Initially,
we gather more than 1, 000 exposure sequences mainly
from the five sources [6], [20]–[23]. We first eliminate
sequences that contain visible object motion. For camera
motion, we retain those sequences that have been successfully
aligned by existing image registration algorithms [44]. After
screening, a total of 690 static sequences remain, which span
a great amount of HDR content, including indoor and outdoor,
human and still-life, day and night scenes. Some representative
sequences are shown in Fig. 3. The spatial resolution ranges
from 0.2 to 20 megapixels, while the number of exposures is
between three and nine. We train MEF-Net on 600 sequences
and leave the remaining 90 for testing.

During training, we apply MEF-SSIM on the finest-scale
only in order to reduce GPU memory cost. The parameters of
MEF-SSIM are inherited from [8], [9]. We resize the exposure
sequences to 128s and 512s as the low- and high-resolution
inputs to MEF-Net, respectively, where 128s means that the
short size is resized to 128 while keeping the aspect ratio. The
leaky parameter λr of LReLU is fixed to 0.2. The radius r and
the regularization parameter λa of the guided filter are set to
1 and 10−4, respectively. λa is a critical parameter in MEF-
Net, as will be clear in Section IV-B. Training uses the Adam
solver [45] with a learning rate of 10−4. Other parameters in
Adam are set by default. The batch size is equal to the number
of exposures in the current sequence. The learning stops when
the maximum epoch number 100 is reached. We try to further
train MEF-Net on sequences of varying high resolutions larger
than 512s [19], but this does not yield noticeable improvement.
Finally, we evaluate MEF-Net at full resolution during testing.

IV. EXPERIMENTS

In this section, we first compare MEF-Net with classical
and recent MEF methods in terms of visual quality and com-
putational complexity. We then conduct a series of ablation
experiments to identify the core components of MEF-Net.
Last, we treat MEF-Net as a universal MEF approximator and
use it to accelerate existing MEF methods.

A. Main Results

1) Qualitative Comparison: We compare MEF-Net with six
previous MEF methods, including Mertens09 [2], Li13 [4],
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Fig. 3. Sample sequences (a)–(l) gathered from five sources [6], [20]–[23]. Each sequence is represented by the corresponding fused image from MEF-Net.
Images are cropped for better visibility.

Fig. 4. MEF-Net in comparison with Mertens09 [2] and SPD-MEF [5]. (a) Source sequence “Studio” courtesy of HDRSoft. (b) Mertens09. (c) SPD-MEF.
(d) MEF-Net.

SPD-MEF [5], GGIF [7], DeepFuse [6], and MEF-Opt [8].
Mertens09 [2] is the primary baseline in MEF. Li13 [4] intro-
duces guided filtering [18] to MEF, while GGIF [7] applies
guided filtering in the gradient domain and achieves the best
performance in a recent subjective experiment [20]. SPD-MEF
is an MEF-SSIM-inspired non-iterative method and ranks sec-
ond in the same subjective study [20]. MEF-Opt [8] is a
gradient-based iterative method, optimizing MEF-SSIM [9]
in the space of all images. DeepFuse [6] is a closely related
method that trains a convolutional network for MEF. In prin-
ciple, MEF-Opt can be regarded as an upper bound of all

MEF methods in terms of MEF-SSIM. The fused images are
generated by the implementations from the original authors
with default settings. Since DeepFuse takes two exposures
only, we try several under- and over-exposed combinations,
and choose the fused image that achieves the best MEF-SSIM
for comparison.

Fig. 4 compares Mertens09 [2] and SPD-MEF [5] with
MEF-Net on the source sequence “Studio”. As can be seen,
Mertens09 does not recover the details of the lamp due to the
extreme dynamic range of the scene and excessive Gaussian
smoothing of the weight maps. In addition, the outside ground
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Fig. 5. MEF-Net in comparison with Li13 [4] and GGIF [7]. (a) Source sequence “Lake forest” courtesy of Jianrui Cai. (b) Li13. (c) GGIF. (d) MEF-Net.

Fig. 6. MEF-Net in comparison with DeepFuse [6] and MEF-Opt [8]. (a) Source sequence “Archway” courtesy of Jianrui Cai. (b) DeepFuse. (c) MEF-Opt.
(d) MEF-Net.

appears over-exposed. SPD-MEF does a good job in detail and
color preservation of the indoor scene, but introduces annoying
color and halo artifacts out of the window. We believe the
distortions arise because SPD-MEF prefers strong or even
over-saturated colors, whose weight maps fail to make smooth
transitions across exposures near strong edges. By contrast,
MEF-Net produces a more natural appearance with faithful
detail and color reproduction.

Fig. 5 compares Li13 [4] and GGIF [7] with MEF-Net
on the source sequence “Lake forest”. By decomposing the
input sequence into the base and detail layers with Gaussian
filtering, Li13 focuses on fine-detail enhancement only and
fails to capture large-scale luminance variations. Consequently,
apparent halo artifacts emerge. Moreover, the global intensity
of the fused image changes abruptly, resulting in an artifi-
cial and uncomfortable appearance. Inheriting the multi-scale

Laplacian decomposition from Mertens09 [2], GGIF alleviates
the halo artifacts to a just noticeable level, but at the same time
reduces the global contrast. The fused image looks relatively
pale and less detailed. Compared to GGIF, MEF-Net better
preserves the global contrast, and the overall appearance of
the fused image is more natural and appealing.

Fig. 6 compares DeepFuse [6] and MEF-Opt [8] with
MEF-Net on the source sequence “Archway”. The fusion
performance of DeepFuse depends highly on the quality of the
input image pair. If the under- and over-exposed images are
not perfectly complementary, DeepFuse may generate a fused
image of lower perceptual quality than a normally exposed
shot. With only two exposures, it is difficult for DeepFuse
to determine the lighting condition of the scene. The missing
intensity component of MEF-SSIM during optimization makes
the situation worse. As a result, we observe unnatural colors
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Fig. 7. Cross resolution generalization. MEF-Net generalizes well across a
wide range of resolutions, which are never seen during training.

around the two lamps and reduced details on the wall and floor.
By operating in the space of all images, MEF-Opt has more
freedom than MEF-Net to produce the fused image with finer
details, which is supported by a higher MEF-SSIM value. With
a sensible network architecture, MEF-Net closely matches the
result of MEF-Opt.

2) Quantitative Comparison: We list the quantitative com-
parison results in terms of MEF-SSIM [9] in Table II. It is
not surprising that MEF-Opt [8] achieves the best perfor-
mance because it optimizes MEF-SSIM in the space of all
images. Among the rest of the methods, MEF-Net is closest
to this upper bound, which suggests that the training is highly
effective, and MEF-Net generalizes well to novel content.
Although sharing the same spirit of MEF-SSIM optimization,
DeepFuse [6] performs the worst due to the extremely strict
constraint on the input sequence. We also employ another
subject-calibrated quality model specifically for MEF, namely
MEF-VIF [42], to quantify the fusion performance on the same
90 test sequences. From Table II, we see that MEF-Net is
among the best performing methods. The proposed MEF-Net
is flexible and may be trained to optimize MEF-VIF directly.

We take a closer look at the cross resolution generaliz-
ability of MEF-Net. Specifically, we downsample the 90 test
sequences to seven resolutions if possible, ranging from 512s
to 2048s, and report the average MEF-SSIM scores in Fig. 7.
Despite the fact that MEF-Net is trained on the resolution
of 512s, it generalizes remarkably well across a wide range
of unseen resolutions with slight MEF-SSIM decrease. Mean-
while, we observe a steady uptrend of MEF-Opt [8] optimized
for MEF-SSIM with the increasing resolution. This may arise
because for most MEF algorithms including MEF-Opt, it is
easier to fuse flat regions than structured ones; when the
spatial resolution increases, the flat regions grow more rapidly
than the structured regions (consider the step-edge images
of different sizes). Other MEF methods perform equally
well except for Mertens09 [2], which is not scale-invariant.

Fig. 8. Running time comparison. (a) Different spatial resolutions with the
number of exposures fixed to 3. (b) Different numbers of exposures with the
spatial resolution fixed to 1024s.

Mertens09 employs Laplacian pyramid [24] to avoid unwanted
artifacts during fusion. The standard implementation of
Laplacian pyramid uses a 5 × 5 lowpass filter, which may not
eliminate high-frequency information before downsampling
(by a factor of two), leading to possible aliasing artifacts across
scales. Therefore, we may only observe scale-invariance when
the image resolutions are related by multipliers of two, which
is verified by approximately the same MEF-SSIM scores
computed at 512s, 1024s, and 2048s in Fig. 7. By replacing
Gaussian filtering with guided filtering, GGIF [7] achieves the
desired scale-invariance within the same framework.

3) Computational Complexity and Running Time: We con-
duct a computational complexity comparison of MEF methods
in terms of the number of floating point operations. We assume
that the number of input channels is K , each of which contains
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TABLE II

AVERAGE MEF-SSIM [9] AND MEF-VIF [42] SCORES OF DIFFERENT MEF METHODS AGAINST MEF-NET ON 90 TEST SEQUENCES COMPUTED
AT FULL RESOLUTION. BOTH MEF-SSIM AND MEF-VIF SCORES RANGE FROM 0 TO 1 WITH A HIGHER VALUE

INDICATING BETTER PERCEPTUAL QUALITY

Fig. 9. MEF-Net in comparison with its variants. (a) Source sequence “House” courtesy of Tom Mertens. (b) Guided filtering as post-processing. (c) Bilinear
upsampling trained end-to-end. (d) MEF-Net (guided filtering trained end-to-end).

M pixels, and the window size used to compute local statistics
is N2. All competing MEF algorithms have a complexity of
O(K M N2), except for MEF-Opt [8] which has a complexity
of O(I K M N2), where I is the number of iterations. Ide-
ally, the computation across the channel dimension can be
parallelized and the value of K should have little impact on
the running time (given sufficient code optimization). Due
to the fact that N2 
 M , the spatial resolution M is the
dominant term. MEF-Net enjoys the lowest computational
complexity because it restricts most of the computation at a
fixed low resolution, while the competing MEF algorithms
need to perform all computation at full resolution.

We compare the running time of MEF-Net with existing
MEF methods on input sequences of different spatial resolu-
tions or different numbers of exposures. The testing platform
is a computer with an Intel i7-6900K 3.2GHz CPU and an
Nvidia Titan X GPU. Mertens09 [2], Li13 [4], SPD-MEF [5],
and GGIF [7] utilize CPU, while DeepFuse [6] and MEF-
Opt [8] exploit GPU. We do not report the running time of
DeepFuse on sequences of different numbers of exposures due
to its strict input constraint. We reduce the maximum iteration
number of MEF-Opt to 100 for the ease of drawing. The
results are shown in Fig. 8. On the GPU, MEF-Net takes
less than 10 ms to process sequences with resolutions ranging
from 512s to 2048s and exposure numbers ranging from three
to nine, which is 10× and 1000× faster than DeepFuse and
SPD-MEF, respectively. More importantly, MEF-Net runs in

TABLE III

AVERAGE MEF-SSIM [9] SCORES OF MEF-NET AND ITS VARIANTS

approximately constant time in spite of the growing spatial
resolution and the number of exposures. On CPU, MEF-Net
is still significantly faster than most MEF methods except for
the GPU-mode DeepFuse.

In summary, we have empirically shown that the proposed
MEF-Net, characterized by CAN and guided filtering, trained
end-to-end, achieves the three desirable properties— flexibility,
speed, and quality—in MEF.

B. Ablation Experiments

We conduct comprehensive ablation experiments to sin-
gle out the contribution of each component in MEF-Net.
We first train MEF-Net on low-resolution sequences solely.
After training, the guided filter is adopted as a post-processing
step to jointly upsample the low-resolution weight maps for
final fusion. We then train MEF-Net with the guided filter
replaced by the simple bilinear upsampler. The MEF-SSIM [9]
results are listed in Table III, where we see that integrating
upsampling techniques with the preceding CAN for end-to-end
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TABLE IV

AVERAGE MEF-SSIM [9] SCORES AS A FUNCTION OF INPUT RESOLU-
TION, DEPTH, AND WIDTH OF CAN IN MEF-NET. THE DEFAULT

SETTING IS HIGHLIGHTED IN BOLD

TABLE V

AVERAGE MEF-SSIM [9] SCORES AS A FUNCTION OF THE REGULARIZA-
TION PARAMETER λa AND THE RADIUS r IN THE GUIDED FILTER. THE

DEFAULT SETTING IS HIGHLIGHTED IN BOLD

training significantly boosts MEF-SSIM. This verifies the
power of end-to-end training, where MEF-Net is directly
supervised by the high-resolution input sequences. Additional
performance gain can be obtained by guided filtering over
bilinear upsampling. We also provide a visual demonstration
in Fig. 9 and find that guided filtering as post-processing
exhibits over-exposure out of the window, while bilinear
upsampling trained end-to-end shows black banding artifacts
due to the excessively coarse weight maps. Guided filtering
trained end-to-end for joint upsampling achieves the best
visual quality, and is the key component of MEF-Net.

We next evaluate the effect of input resolution, depth, and
width of CAN on the performance of MEF-Net. The depth
and width represent the number of convolution layers and the
number of feature maps in each intermediate layer, respec-
tively. A shallower CAN implies a smaller receptive field.
The results are listed in Table IV, from which we have several
interesting observations. First, MEF-SSIM increases with input
resolution, depth, and width as expected. Second, by changing
the input resolution from 128s to 256s, we observe marginal
MEF-SSIM improvement by 0.003. Third, MEF-Net achieves
satisfactory performance with a fairly shallow and compact
architecture (e.g., with 16 feature maps per layer or a depth
of five).

We also assess the role of the regularization parameter λa

and the radius r in the guided filter. λa controls the smoothness
of Ak , which is evident in Eq. (6). r also affects the smoothness
of Ak in a less direct way. A large λa (or r ) generates a smooth
Ŵk and may not be good at preserving fine details, leading to
a decrease of MEF-SSIM in Table V. A small λa produces a
relatively noisy Ŵk and may introduce dot artifacts, as shown
in Fig. 10. Our default setting achieves the best performance.

C. MEF-Net as a Universal MEF Approximator

In this subsection, we exploit the fast speed of MEF-Net and
use it as a universal approximator to accelerate existing MEF

Fig. 10. Emergence of the dot artifacts with a small regularization parameter
λa in the guided filter. (a) λa = 10−8. (b) λa = 10−4 (default).

Fig. 11. MEF-Net as a universal approximator. (a) SPD-MEF [5]. (b) SPD-
MEF approximated by MEF-Net. (c) GGIF [7]. (d) GGIF approximated by
MEF-Net. Source sequence “Stone house” courtesy of Jianrui Cai.

methods. Specifically, we first apply the target MEF method
to our dataset. The generated fused images are considered as
the ground truths. We then train MEF-Net on input/output
pairs that contain the exposure sequences and the correspond-
ing fused images. The training procedure is the same as
Section III-D, except that we optimize a perceptual image
quality metric—SSIM [43] in the RGB space. We have also
experimented with the mean squared error (MSE) suggested
in [14], [19], but obtain inferior approximation accuracy.

Fig. 11 shows the visual results of MEF-Net in approxi-
mating SPD-MEF [5] and GGIF [7] on the source sequence
“Stone house”. Although the two MEF methods produce dif-
ferent overall appearances, MEF-Net is able to closely match
them. On the 90 test sequences, the approximation accuracy
in terms of SSIM for SPD-MEF and GGIF is 0.961 and
0.976, respectively, demonstrating the promise of MEF-Net
as a universal MEF approximator. On sequences of resolution
1024s, we speed up SPD-MEF and GGIF more than 1000 and
100 times, respectively.

V. CONCLUSION AND DISCUSSION

We have introduced MEF-Net, a fast MEF method based on
deep guided learning. The core idea of MEF-Net is to predict
the low-resolution weight maps using a CAN and jointly
upsample them with a guided filter for final weighted fusion.
The high speed of MEF-Net is achieved by restricting the
main computation at a fixed low resolution and parallelizing
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the computation across exposures. The visual improvement of
the fused images is achieved by end-to-end training with MEF-
SSIM measured at full resolution. In addition, we demonstrate
the promise of MEF-Net as a universal MEF approximator to
accelerate existing and future MEF methods.

The current MEF-Net works with static scenes only. How to
extend it to account for dynamic scenes is an interesting and
challenging problem yet to be explored. The major impediment
here is the lack of perceptual image quality metrics [46] for
dynamic scenes or ground truths for supervision. Kalantari and
Ramamoorthi [16] put substantial effort in capturing static and
dynamic exposure brackets of the same scene and treated the
static sequences as a form of ground truths. Cai et al. [20]
made use of 13 existing MEF and HDR deghosting methods to
generate a set of candidates and manually picked the best ones
as the ground truths. Both processes are expensive and time-
consuming, which limit the number of collected sequences.
In addition, we desire more flexible and faster MEF methods
for dynamic scenes.
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