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Abstract— Blind image quality assessment (BIQA) aims to
automatically predict the perceptual quality of a digital image
without accessing its pristine reference. Previous studies mainly
focus on extracting various quality-relevant image features.
By contrast, the explorations on highly efficient learning model
are still very limited. Motivated by the fact that it is difficult to
approximate a complex and large data set via a global parametric
model, we propose a novel local learning method for BIQA to
improve quality prediction performance. More specifically, we
search for the perceptually similar neighbors of a test image
to serve as its unique training set. Unlike the widely used k
nearest neighbors principle, which only measures the similarity
between the testing and training samples, the local consistency
of the selected training data is also considered to generate
smoother sample space. The image quality is estimated via a
sparse Gaussian process. As an additional benefit, the uncertainty
of the predicted score is jointly inferred, which can subsequently
drive more robust perceptual image processing applications, such
as deblocking investigated in this paper. Extensive experiments
demonstrate that the proposed learning model leads to consis-
tent quality prediction improvements over many state-of-the-art
BIQA algorithms.

Index Terms— Blind image quality assessment, local
consistency aware retriever, uncertainty aware evaluator.

I. INTRODUCTION

ACCURATELY predicting the human perception of image
quality is of fundamental importance in evaluating and

improving the user experience of the multimedia systems.
In the past decades, booming development of digital imaging
and internet technologies has prompted the extreme growth
of internet pictures, which makes the subjective evaluation
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impractical and expensive. As a result, the objective image
quality assessment (IQA) models that can automatically assess
the perceptual quality of digital images are highly desirable,
which can also be subsequently deployed to monitor image
acquisition, optimize image processing systems and design
perception-friendly display devices [1]–[7].

Recently, the blind image quality assessment (BIQA) has
become an active research area due to the inaccessibility of
pristine reference image in many real-world applications. Early
research on BIQA usually assumes that the distortion type is
known. Then, the image features or measures are designed to
quantify the obviousness of specific distortion artifacts, such
as, blocking [8], [9], ringing [10], [11] and blurring [12]–[14].
Since these models are developed for some specific distortion
types, their application scope would be fairly limited.

Therefore, more and more researchers turn their atten-
tion to the general purpose BIQA, where no assumption
about distortion type is needed. Through unremitting efforts
in recent years, many representative general purpose BIQA
algorithms [15]–[23] have been proposed, which deliver good
prediction performance via a supervised learning framework.
Particularly, during the training phase, these approaches map
the labeled images to a quality-relevant feature space, and
utilize a parametric regression function to approximate the
distribution of all training samples. In the test phase, the test
image is also mapped to the same feature space, and then
loaded to the offline trained regression model, which produces
a continuous score to indicate the predicted quality.

Under the same training framework, recent BIQA meth-
ods mainly focus on developing a variety of quality-aware
image features. Moorthy and Bovik [15], [19] modeled the
distribution of wavelet coefficients and used estimated para-
meters to summarize the natural scene statistics (NSS) that
are assumed to be quality-relevant. Saad et al. [16] explored
the statistics of DCT coefficients to measure the image qual-
ity variation. Mittal et al. [18] found that the NSS of the
locally normalized intensity coefficients are highly correlated
with human perception. Xue et al. [22] extended the local
contrast analysis by computing the joint statistics of gradient
magnitude and Laplacian of Gaussian responses. Gu et al.
[20] combined three types of image features based on a
free energy theory. Wu et al. [23] proposed the multi-channel
fused images features to simulate the hierarchical structure of
human vision system. Zhang et al. [24] utilized the semantic

1051-8215 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WU et al.: BIQA USING LOCAL CONSISTENCY AWARE RETRIEVER AND UNCERTAINTY AWARE EVALUATOR 2079

Fig. 1. Diagram of the proposed LOCRUE learning model. The symbol of an image in the feature space has been labeled in its top left corner. The symbols
with the same shape and color share the equal perceptual quality, and vice versa. The local regression produces two outputs, i.e., the predicted quality score μ
and its associated uncertainty value σ .

obviousness to enhance the performance of low-level NSS fea-
tures. In addition, some learning based image representations
are also discussed in [25]–[27]. Benefitting from these studies,
more and more quality relevant visual information has been
developed to constantly increase the prediction accuracy of
BIQA models.

However, not as active as the research on image
feature extraction, only very limited learning models are
explored for the BIQA task, even though its performance
is crucial in determining the quality prediction accuracy.
In existing approaches [15], [18]–[22], [25], [26], the support
vector regression (SVR) [28], [29] dominates the prediction
function learning procedure, which is acknowledged as an
efficient tool in processing high-dimensional data [29]–[31].
Gao et al. [21] improved the regression performance by incor-
porating a feature fusion scheme – multiple kernel learn-
ing [32], [33] into the SVR. In addition to the SVR-like
geometric approaches [34], [35], some statistical learning
models are also adopted. Saad et al. [16] investigated the
performance of a simple probabilistic predictive model based
on the naive Bayes theory. Limited by the accuracy in fitting
the joint distribution of the high dimensional features and
the image quality labels [36]–[38], this probabilistic model
does not bring consistent performance gains compared with
the SVR. Li et al. [17] tried to learn a quality evaluator with
a generalized regression neural network, which delivers better
prediction performance [17]. To achieve more elaborate infer-
ence, Hou et al. [39] introduced additional hidden variables
in the probabilistic model, which generates a deeper network.
With the help of the well-designed hierarchical framework,
this statistical learning model could estimate the image quality
more accurately. Recently, the studies on deep neural net-
works (DNN) are also discussed for BIQA, and promising
results have been reported in [40] and [41]. Although the DNN
is quite popular in other research areas such as image classi-
fication and object detection, its huge computational load and
data hungry property bring great challenges in implementing
BIQA on limited computational resources and subject-rated
images.

The predictive models mentioned above are all developed
based on global learning, which optimizes a single para-
metric function by minimizing the mean fitting error across

all training samples. An appealing aspect of this scheme
lies in its one-pass training process, which could store the
offline trained model in a small memory and directly apply
it to all test samples [42]. However, when the training
data present a complex distribution, the adoption of global
learning is usually computationally intensive and analytically
intractable [42], [43]. For these reasons, an alternative solution
– local or lazy learning becomes more attractive, which could
accelerate the learning procedure and even achieve more accu-
rate approximation [44]–[48]. Particularly, the local learning
follows a divide-and-conquer strategy, and decomposes the
complex global fitting problem into a simpler query-specific
approximation [42], [43], which tries to interpret each test
sample with its local neighbors. Inspired by aforementioned
studies, Wu et al. [23] investigated a simple local learning
instance, which is referred to as label transfer (LT), to estimate
the quality of an image by pooling the quality labels of its k
nearest neighbors (kNN). Although developed from a straight-
forward distance based pooling scheme, the LT achieved
competitive prediction performance, which encourages us to
conduct a more detailed exploration of local learning.

In this paper, we propose a novel local learning model,
which is characterized by utilizing a LOcal Consistency-aware
Retriever and an Uncertainty-aware Evaluator (LOCRUE).
As shown in Fig. 1, we tackle the BIQA in two phases.
In Phase I, the perceptual neighbors of a test image are first
retrieved from all labeled samples in the feature space, which
constructs a query-specific local training set. In Phase II,
the regression function is learned from previous selected
training samples, and produces the estimated quality score
μ and its associated uncertainty value σ for current test
image. In comparison with the previous LT scheme [23], the
proposed LOCRUE shows significant advantages, which are
summarized into the following three points.

1) Probabilistic Interpretation: A posterior probability
model is developed to measure the perceptual similarity
of two images with the given feature distance. Specif-
ically, we collect the ternary results from a subjective
test by comparing the quality of two distorted images,
in which the subjects are required to judge which image
is better or they are perceptually equal to each other.
Then, the probabilistic relationship between the feature
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distance and perceptual similarity is learned by kernel
density estimate (KDE) [49], which provides more clear
and accurate similarity interpretation than LT [23].

2) Local Consistency: A local consistency constraint is
embedded into the perceptual neighbor retrieval process.
Besides minimizing the dissimilarity of the feature vec-
tors between the test image and its selected labeled
samples, the proposed model also tries to guarantee that
the local neighbors share close image quality, which
could produce a smoother sample space and boost the
local learning.

3) Predictive Uncertainty: Due to the fact that humans nat-
urally show uncertainty in making decisions [50]–[55],
we integrate both the subjective mean opinion scores
(MOS) and their associated standard derivations across
multiple subjects into the learning model via the sparse
Gaussian process (GP) [56]. By doing so, we are able to
predict the image quality and its associated uncertainty,
which are measured by the mean and standard derivation
values of the estimated GP. This two dimensional output
is more consistent with human judgements, and very
beneficial for improving the robustness of perception-
driven applications.

Through experiments on LIVE II [57], TID2013 [58],
VCL@FER [59], and CSIQ [60] databases, it is verified
that the proposed learning model efficiently improves the
prediction performance of existing BIQA algorithms as using
the same set of features as input. Moreover, it is very robust
to small training sets.

The rest of this paper is organized as follows. We introduce
the proposed LOCRUE model in Section II. The experimental
results are presented in Section III. Section IV discusses a
perception-driven deblocking application based on LOCRUE.
Finally, we conclude this paper in Section V.

II. METHODOLOGY

As discussed in the introduction section, the local learn-
ing aims at interpreting a test or query image by its local
neighbors, which consists of perceptual neighbors retrieval and
local regression processes. In this section, we describe how to
generate a smooth sample space by combing a probabilistic
similarity measure with the local human opinion consistency
constraint. In the following, a sparse Gaussian process based
probabilistic model is introduced to implement the local
regression which produces both the image quality score and
its associated uncertainty value.

A. Local Consistency Aware Perceptual Neighbors Retrieval

1) Probabilistic Similarity Measure: Let Iq and Ic denote
the query image and a candidate image, respectively. Mean-
while, let xq and xc denote their feature vectors. In a typical
image retrieval system, the similarity of these two images is
usually measured by the difference of xq and xc in terms of
a distance metric, which is denoted by D(xq , xc) [61]–[63].
Particularly, a smaller D(xq , xc) indicates a higher similarity
between Iq and Ic.

Due to the semantic gap, this feature distance based similar-
ity measurement usually performs poorly with irrelevant image
features, that provide misleading information or retrieval
results for the query image [64]. To address this problem, we
develop an efficient posterior probability model to measure the
similarity of two images with given feature distance.

Let l denote a similarity related binary label. We set l
to 1 if the perceptual quality of Iq and Ic are equal to
each other. Otherwise, l is set 0. Our target is to estimate
the posterior probability distribution of l with given feature
distance D(xq , xc), i.e., p

(
l|D(xq , xc)

)
. For short, we use D to

represent D(xq , xc) in the following text. Based on the Bayes’
theorem, p(l|D) can be expressed as

p(l|D) = p(D|l) · p(l)
∫ ∞
−∞ p(D|l)p(l)dl

. (1)

Training the likehood p(D|l) and the prior p(l) requires
the semantic labels l from human subjects. Thanks to the
large-scale database in our previous works [65], [66], we have
collected 1440 groups of ternary labels in the pairwise com-
parisons of two distorted images across 30 subjects. More
specifically, each subject is asked to judge which image is
better or if they are perceptually equal to each other. In this
paper, we set l to 0 if more than 15 subjects believe that a
pair of images are perceptually different.

With the help of our labeled pairwise training data, we can
obtain the raw density TD,l , which is given by

TD,l = 1

Nl

Nl∑

i=1

δ(D − di ) (2)

where Nl denotes the number of pairwise samples with the
label l, di is the feature distance of the i th pair of images, and
δ(·) is the Dirac delta function.

To deduce the probability distribution p(D|l) from previous
finite samples, the kernel density estimation (KDE) [49] is
employed here, which represents the estimated probability
distribution as

p̂(D|l) =
∫ ∞

−∞
TD−s,lk(s)ds (3)

where k(s) is a kernel function for smoothing the sampled
raw density. In our implementation, the widely used Gaussian
kernel is employed, i.e.,

k(s) = 1√
2πω

e
− s2

2ω2 (4)

where ω is the variable kernel bandwidth whose optimization
can be found in [49].

For clarity, a KDE example for inferring the distribution
of p(D|l = 1) has been show in Fig. 2, where the quality
aware features from [18] are used for image representation
and the Euclidean distance is employed in calculating D.
By substituting Eq. (3) into Eq. (1), we obtain the proba-
bilistic description for measuring the perceptual equality of
two images. Particularly, a larger p(l|D) means a higher
confidence in making the judgement for l. It is seen that
p(D|l = 1) is very small when D approaches zero. This
result is consistent with our assumption about the existence of
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Fig. 2. An example of KDE result for the likehood p(D|l = 1).

Fig. 3. A toy example of the comparison between different image retrieval
schemes. The symbols with the same shape share the similar perceptual
quality, and vice versa. (a) kNN. (b) Local consistency constraint.

semantic gap between the image feature and its semantic label.
That is, a smaller D does not necessarily lead to more similar
perceptual quality between two samples, and the probabilistic
model could provide a reliable similarity description.

2) Local Consistency Based Image Retrieval: With the
proposed similarity measure, we would discuss how to collect
the perceptual neighbors of a test image. Specifically, our
target is to separate all candidate training images into two
compact groups, in which the selected samples are labeled by
l = 1 and the unselected samples are labeled by l = 0.

In comparison with the classical kNN scheme, the signifi-
cant difference of our image retrieval method lies in its local
consistency constraint. For clarity, a toy example has been
show in Fig. 3. Since the kNN only measures the differences
between the testing and training samples, some perceptually
dissimilar data are easily selected when they are close to
the test image in the feature space. To address this problem,
we introduce the penalty for the dissimilarity of all selected
samples, which are bounded by the ellipse in Fig. 3 (b). In
this way, a trade-off could be made between approaching the
test image and keeping local consistency among the selected
candidates.

As discussed in many computer vision works [67]–[69], this
local consistency constrained labeling task can be formulated
as a graph based energy minimization problem. In this study,
the set of all candidate training images can be represented
as a graph, and each candidate training sample is denote by
a node. The diagram of the label decision process is shown
in Fig. 4. There are two additional terminal nodes sink T

Fig. 4. Perceptual neighbors retrieval using graph cut. The cost of each edge
is represented by its thickness. The dashed curve represents the minimum cut
by separating the nodes into S and T .

and source S located on the top and bottom of this graph,
respectively. The node T represents the decision “unselected”
(i.e., l = 0) and the node S denotes the decision “selected”
(i.e., l = 1). They are linked with the candidate image nodes
by the colorful edges whose capacities �i correspond to the
penalty for assigning the terminal labels (i.e., l = 0 or 1)
to the i th candidate image. Meanwhile, the candidate image
nodes are also linked with each other by the black edges whose
capacities �i, j correspond to the penalty for the inconsistency
between two neighbors.

Let li denote the label assigned to the i th candidate image
and L = {l1, · · · , lN } denote the label set for the whole graph.
The graph based energy function can be represented by

E(L) =
N∑

i=1

�i (li ) +
∑

i, j∈�

�i, j (li , l j ) · δ(li − l j ) (5)

where � is the set of neighboring candidate images.
For our perceptual neighbors retrieval task, we utilize the

negative log of the proposed similarity measure to describe
the cost of assigning the label li to the current node, which
corresponds to the unary term in Eq. (5), i.e.,

�i (li ) = − ln
(

p(li |Di )
)

(6)

where Di denotes the feature distance between the i th can-
didate image and the test image, and a higher conditional
probability p(li |Di ) would produce a smaller cost �i (li ).

The pairwise term �i, j in Eq. (5) corresponds to our local
consistency constraint which prefers collecting the training
data with similar perceptual quality. In the case of the BIQA
task, the high-level semantic information (i.e., human opinion
scores) are available for all training images. Therefore, we can
accurately measure the inconsistency of two candidate images
with the difference between their image quality, i.e.,

�i, j = |Si − Sj | (7)

where Si and Sj denote the human opinion scores of the i th
and j th candidates, respectively.

After building the energy function, we can solve the labels L
based on the maximum flow/minimum cut algorithm [67].
Then, all the candidates labeled by “selected” are used for
the local training data of the test image. We illustrate the
top-5 image retrieval results using different schemes in Fig. 5,
where the quality-aware features from [18] are used for image
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Fig. 5. Top-5 image retrieval results based on two different schemes. From left to right, the similarity between the test image and the selected candidate
gradually reduces in terms of two retrieval schemes. All image names and their associated DMOSs are labeled on the bottom.

representation. Both the test and candidate images are from the
LIVE II database [57]. It is clear that our local consistency
constrained scheme generates smoother perceptual neighbors,
whose mean DMOSs are very close to the test image and
present small variations. By contrast, the kNN scheme collects
five perceptually different neighbors, even they show the
similar or the same visual contents.

B. Sparse Gaussian Process Based Local Regression

With the locally consistent training data, we further
discuss how to learn a query-specific regressor. In view of
the uncertainty of humans in making decisions [50]–[52],
we consider all labeled training data as noisy observations. For
the i th training image, let yi denote its noisy target in terms
of the subjective opinion score, xi denote its feature vector,
and f (·) represent the latent predictive function that we are
going to learn. Without loss of generality, the noise εi on yi

is assumed to follow an additive Gaussian process, which can
be represented by

yi = f (xi ) + εi , εi ∼ N (0, σu) (8)

where σu denotes the standard derivation of the noise induced
by the uncertainty of human subjects, and the expectation
value E(yi) corresponds to the MOS or DMOS assigned to
the i th training sample.

As discussed in [70] and [71], the Gaussian process regres-
sion could efficiently work with the noisy training data via
a probabilistic framework, which considers the predictive
function f following a multivariate Gaussian distribution, i.e.,

p(f |X) = N (f |0, K) (9)

where f = { f1, · · · , fN } and X = {x1, · · · , xN }. K is a N ×N
covariance matrix, whose entries K(i, j) are derived from the
parametric kernel function K�(xi , x j ), i.e.,

K�(xi , x j ) = α exp(−1

2
‖βT · (xi − x j )‖2) (10)

where the scalar α and vector β construct the hyperparameters
� = {α, β} of a GP.

The training process aims to solve the optimal � which can
maximize the log of the following marginal likelihood

p(y|X, θ) = N (y|0, K + σ 2
u I) (11)

where y = {y1, · · · , yN } and I is an identity matrix.
The high computational load limits the usage of this stan-

dard GP regression in our local learning model, which requires
a high efficiency online training. To accelerate the training
process, the sparse GP discussed in [56] is utilized to replace
the marginal likelihood in Eq. (11) by

p(y|X, X̂,�) = N (y|0, KN M K−1
M KM N + � + σ 2

u I) (12)

where X̂ = {x̂1, · · · , x̂M } is the pseudo input with M elements
and satisfies M < N . KM is a M×M matrix, whose element is
given by K�(x̂i , x̂ j ). KN M is a N × M matrix whose element
is calculated by K�(xi , x̂ j ). Correspondingly, KM N = KT

N M .
� = diag(λ1, · · · , λN ) is a diagonal matrix, whose element is
given by

λi = K�(xi , xi ) − kT
i K−1

M ki (13)

where kT
i is the i th row vector of KN M .

By means of the sparse pseudo input, the training complex-
ity in maximizing Eq. (12) could be reduced to O(M2 N) [56].
For a given test image, we use x∗ and y∗ to denote its feature
vector and the associated human opinion score, respectively.
The BIQA in our local regression is equivalent to calculate
the mean μ∗ and variance σ 2∗ of y∗, which can be given by

μ∗ = kT∗ Q−1
M KM N (� + σ 2

u I)−1y

σ 2∗ = K�(x∗, x∗) − kT∗ (K−1
M − Q−1

M )k∗ + σ 2
u (14)

where k∗ is a M-dimension column vector and its i th
element is K�(x∗, x̂i ). In addition, QM = KM + KM N

(� + σ 2
u I)−1KN M .

More specifically, the μ∗ represents our estimated subjective
mean opinion score (i.e., MOS or DMOS), and σ 2∗ is the
associated uncertainty value. A higher σ 2∗ means a more
significant variation across multiple subjects in rating the
quality of an image.
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III. EXPERIMENTAL RESULTS

A. Databases and Protocols

We evaluate the performance of the proposed LOCRUE
method on four publicly available IQA databases including
LIVE II [57], TID2013 [58], VCL@FER [59], and CSIQ [60],
in which both the subjective mean opinion scores (e.g., DMOS
or MOS) and their associated standard derivations are assigned
to each image.

The LIVE II database collects 29 pristine images and simu-
lates five distortion types, i.e., JPEG2000 compression (JP2K),
JPEG compression (JPEG), additive white noise (WN),
Gaussian blur (GB) and fast fading Rayleigh channel (FF),
which generates 779 distorted images. The TID2013 database
consists of 25 reference images and simulates 24 distortion
types to obtain 3000 distorted images. In VCL@FER database,
there are 23 reference images and 552 distorted versions
contaminated by 4 distortion types including JP2K, JPEG,
WN and GB. For CSIQ [60] database, 30 original images
are collected and contaminated by six artifacts to generate
866 distorted images. It is noted that there are 19 overlapped
reference images between LIVE II and TID2013, which share
the same visual contents. For the VCL@FER and CSIQ
databases, their reference images are completely different from
each other and unlike the visual contents in both LIVE II and
TID2013.

Similar to the criterion in [16], [18], [22], and [39], for
the TID2013 and CSIQ databases, we only consider four
common distortion types, i.e., JP2K, JPEG, WN and GB,
which also appear in both LIVE II and VCL@FER. Two com-
monly used measures are employed for evaluating the perfor-
mance of different BIQA algorithms, i.e., Spearman rank-order
correlation coefficient (SRC) and Pearson linear correlation
coefficient (LCC). In view of the nonlinearity induced by
the subjective rating process, we follow the recommendations
of video quality experts group (VQEG) [72], and map the
predicted quality scores to the human opinion score via a four-
parameter monotonic logistic function in calculating the SRC
and LCC indices. Let μ denote the predicted quality score and
μm denote its nonlinear mapping result, the nonlinear mapping
function is given by

μm = β2 + β1 − β2

1 + exp(−μ−β3|β4| )
(15)

where β1 ∼ β4 are the parameters to be fitted.

B. Implementation Details

Since we focus on developing high efficiency learning
method, the BIQA is implemented by incorporating existing
quality-aware image features into the proposed LOCRUE
model. Particularly, the image features from the latest seven
research are investigated, i.e., BIQI [15], BLIINDS II [16],
BRISQUE [18], CORNIA [25], M3 [22], NFERM [20] and
TCLT [23], which have achieved state-of-the-art prediction
performance in the general purpose BIQA task.

For comparison, the most popular learning model – SVR
is utilized as the baseline and the kernel selection follows

the recommendations in the literatures [15], [16], [18], [20],
[22], [23], [25]. According to the instruction in [73], the grid
search is utilized to determine the optimal SVR parameters for
each BIQA metric. In addition, the nonparametric LT method
in [23] is also involved in this experiment. As suggested
in [23], we set the neighbor number to 5 and utilize the chi-
square distance metric to measure the similarity of two images.
For our LOCRUE model, the noise variance σ 2

u is determined
by the mean variance of human opinion scores in the local
training data, which are collected for each test image.

To learn the regression models for different BIQA metrics,
we follow the same criteria in [15], [16], [18], [20], [22], [23],
and [25] and partition each database into the non-overlapped
training and testing sets. More specifically, we randomly select
part of the reference images and their distorted versions to
build the training set. The rest images in each database are used
for testing, which ensures that the test images present different
visual contents with respect to the training samples. In this
section, we investigate the performance of a learning model
under three partition sizes, whose training set would occupy
80%, 50% and 20% of all images in each database. We repeat
each random partition 100 times on each IQA database. Then,
the median SRC and LCC are reported for evaluation.

C. Effect of Pseudo Input M

As discussed in Section II-B, the sparse GP is utilized in our
method to balance the regression accuracy and computational
complexity with a parameter M . To investigate the effect of M
in LOCRUE, we test ten possible values of M = s ·N , N is the
total number of perceptual neighbors and s ∈ {0.1, 0.2, · · · , 1}
is a scale factor. Both the SRC performance and running time
are reported under each s, which are represented by SRCs

and Ts , representatively. To facilitate the observation, two
relative measures are employed,

�SRCs = SRC1 − SRCs

�Ts = Ts/T1 (16)

where a smaller �SRCs means that the accuracy of sparse
GP regression is closer to the standard GP with the setting of
M = s · N . Meanwhile, a smaller �Ts means the training time
of the sparse GP is less than the standard one.

We repeat 100 times of random train-test splitting tests
on the LIVE II database, and the training set takes up 80%
of all images. The median SRC and running time across
100 trials are used for SRCs and Ts . The results are shown
in Figs. 6 and 7. For all quality-aware features, the regression
accuracy of sparse GP gradually approaches to the standard
GP with an increasing M , where �SRCs gets close to 0 as s
grows from 0 to 1 in Fig. 6. Unsurprisingly, the computational
complexity of sparse GP also increases with M , where �Ts

goes up with s in Fig. 7. From Fig. 6, we can find that the
�SRCs converges when s = 0.8. Meanwhile, the running time
of sparse GP has reduced by 40% with respect to the standard
GP as shown in Fig. 7. To keep a good balance between the
regression accuracy and the computational complexity, we set
the pseudo input M to 0.8 · N in the following experiments.
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TABLE I

MEDIAN SRC AND LCC RESULTS ACROSS 100 TRIALS USING 80% DATA FOR TRAINING

TABLE II

MEDIAN SRC AND LCC RESULTS ACROSS 100 TRIALS USING 50% DATA FOR TRAINING

Fig. 6. The effect of M on the regression accuracy (M = s · N ).

D. Consistency Evaluation

In order to evaluate the prediction accuracy of different
learning methods, the median SRC and LCC results calculated
under three training set sizes (i.e., 80%, 50% and 20%)
are shown in Tables I-III, respectively. For clarity, the best
SRC and LCC results are highlighted by boldface in each
column. It is seen that the SRC performance of our LOCRUE
model outperforms both the SVR and LT methods across
all IQA databases when incorporating with existing quality-
aware image features. As shown in Table III, the highest

Fig. 7. The effect of M on the computational complexity (M = s · N ).

SRC improvement between the LOCRUE and SVR is as large
as 0.06, which is achieved by working with the BRISQUE
feature on VCL@FER database. In comparison with the LT,
the proposed LOCRUE model achieves a more significant SRC
improvement in working with the TCLT feature on VCL@FER
database, which is up to 0.127 as shown in Table II. Since the
SVR focuses on minimizing the mean error across all training
samples, the quality-irrelevant features would produce a more
complex distribution in the feature space, which increases
the difficulty in approximating all training samples with a
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TABLE III

MEDIAN SRC AND LCC RESULTS ACROSS 100 TRIALS USING 20% DATA FOR TRAINING

Fig. 8. The scatter plots of the predicted quality index μ∗ vs. the human opinion scores across four IQA databases.

global regression model. In contrast, the variation in the
local region of the feature space is usually smoother, which
facilitates the regression task in our LOCRUE model and
delivers more accurate prediction. In addition, in comparison
with our previous local learning model – LT, the proposed
LOCRUE algorithm is superior in collecting perceptually
similar neighbors, which is highly beneficial for learning a
more accurate quality evaluator.

E. Uncertainty of Image Quality

As discussed in Section II-B, in addition to the pre-
dicted image quality, the proposed LOCRUE model also

provides the uncertainty value σ∗ for a given evaluation. More
specifically, the estimated GP provides a 95% confidence
interval �∗ for the estimated image quality μ∗, which is
given by

�∗ = [μ∗ − 2σ∗, μ∗ + 2σ∗]. (17)

Fig. 8 shows the scatter plots of the predicted scores versus
the DMOSs/MOSs across four databases, where the confidence
interval �∗ has been highlighted by the magenta region. In this
example, the BRISQUE feature is combined with our proposed
LOCRUE model to estimate the image quality and the training
set occupies 80% images in each database. It can be found
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Fig. 9. Illustration of computing the overlap between the confidence intervals
of two estimated GPs. The light blue region corresponds to the intersection
G P∗(�∗)

⋂
G P∗′ (�∗′ ). The combination of the light blue and red regions

corresponds to the union G P∗(�∗)
⋃

G P∗′ (�∗′ ).

that the region �∗ provides the alternative dynamic range
for the quality prediction of an image. An important benefit
of this confidence interval lies in its interpretability for the
possibility of mistaking two perceptually similar image. More
specifically, we don’t require that two images are completely
distinguishable in terms of a hard rank order. Alternatively,
the possible rank is derived by the comparison between μ∗
and μ∗′ . The possibility of mistaking these two images can
be measured by their overlap O in terms of the confidence
interval, i.e.,

O = G P∗(�∗)
⋂

G P∗′(�∗′)

G P∗(�∗)
⋃

G P∗′(�∗′)
(18)

where G P∗ and G P∗′ denote the probability density function
for the estimated image quality μ∗ and μ∗′ respectively.

An illustration of O is shown in Fig. 9. A higher O
means that the two images are more indistinguishable in
terms of their perceptual quality. This overlap measurement
is useful for detecting the confusing samples and improv-
ing the robustness of a perception-driven image processing
system.

IV. APPLICATION TO PERCEPTION-DRIVEN DEBLOCKING

To verify the effectiveness of the proposed uncertainty-
aware BIQA method, we incorporate it into a perception-
driven deblocking application. Particularly, the parametric
shape adaptive DCT (SA-DCT) filter [74] is utilized to
improve the perceptual quality of the compressed image via
H.264/AVC codec.

In a conventional framework, a BIQA model works as
a parameter evaluator (PE) to select the optimal filtering
result which could produce the minimum estimated DMOS.
In contrast, we implement the image filtering by a weighted
fusion (WF) scheme, i.e.,

Io =
N∑

i=1

wi Ii (19)

where Io denotes the output image, I1 ∼ IN denote filtered
images under different parameters, and wi is the weight
assigned to Ii .

TABLE IV

MS-SSIM SCORES FOR DIFFERENT DEBLOCKING SCHEMES

Let Im denote the filtered image which produces the optimal
estimated quality μm , where Im ∈ {I1, · · · , IN }. Let Oi denote
the confidence interval overlap between Im and Ii . Here, we
assign a higher weight to the image whose quality rank is
more easily mistaken with Im . Then, the weight wi can be
defined by

wi = Oi
∑N

i=1 Oi
. (20)

For comparison, we use the SVR based BRISQUE met-
ric to implement the PE based the image filtering, and
the combination of BRISQUE features with our LOCRUE
model is employed for conducting the WF scheme. Ten test
images across different visual contents and resolutions are
collected from two publicly available databases [75], [76],
which are widely used for image processing and video coding.
Then, the KTA2.4r1 [77] software is used to compress them
under the Intra Only profile with the quantization setting
QP = {38,42,46,50}. Similar with [18] and [23], the
highly reliable full reference IQA metric MS-SSIM [78]
is employed to measure the deblocking performances of
PE and WF.

In Table IV, we show the detailed MS-SSIM scores for all
test images, where the best results under each QP setting have
been highlighted by boldface. It is seen that the proposed WF
scheme delivers higher average MS-SSIM results across all QP
settings in comparison with the traditional PE scheme. That
is, we can produce human preferred deblocking results under
different degradation degrees caused by H.264/AVC compres-
sion. For clarity, a visual comparison for the test image Lena
compressed under the QP setting of 46, is shown in Fig. 10.
It is seen that the PE based filtering result still presents
obvious blocking artifact which is caused by mistaking the
image quality processed with different parameters. Unlike the
conventional method which tries to select one optimal filtering
result, our uncertainty-aware evaluator provides a multi-frame
fusion based framework to reduce the risk of selecting subop-
timal parameter, which could generate better image quality
as shown in Fig. 10 (d). The similar idea could also be
extended to many other perception-driven image processing
applications, such as, image contrast enhancement [79], [80],
tone mapping for high dynamic range imaging [81], and color
correction [82].
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Fig. 10. Visual comparisons between different deblocking results. (a) Original image. (b) H.264/AVC compression. (c) PE. (d) WF

V. CONCLUSION

In this paper, we propose a novel BIQA algorithm
which consists of a local consistency-aware retriever and the
uncertainty-aware evaluator. Due to the advantage in capturing
the smooth variation of a local region in the feature space,
we can achieve better prediction performance in comparison
with conventional global learning methods. In addition, by
means of the probabilistic framework of our local regression
model, the proposed method provides an efficient uncertainty
description for the estimated image quality. Experiments on
four benchmark IQA databases demonstrate that the proposed
learning model efficiently improves the prediction accuracy of
existing BIQA metrics. The application for auto deblocking
also verifies its efficiency in improving the robustness of a
perception-driven image processing system.
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