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Abstract—With the rapid growth of streaming media applica-
tions, there has been a strong demand of quality-of-experience
(QoE) measurement and QoE-driven video delivery technologies.
Most existing methods rely on bitrate and global statistics of stalling
events for QoE prediction. This is problematic for two reasons.
First, using the same bitrate to encode different video content re-
sults in drastically different presentation quality. Second, the inter-
actions between video presentation quality and playback stalling
experiences are not accounted for. In this work, we first build a
streaming video database and carry out a subjective user study to
investigate the human responses to the combined effect of video
compression, initial buffering, and stalling. We then propose a
novel QoE prediction approach named Streaming QoE Index that
accounts for the instantaneous quality degradation due to percep-
tual video presentation impairment, the playback stalling events,
and the instantaneous interactions between them. Experimental
results show that the proposed model is in close agreement with
subjective opinions and significantly outperforms existing QoE
models. The proposed model provides a highly effective and ef-
ficient meanings for QoE prediction in video streaming services.1

Index Terms—Adaptive bitrate streaming, quality-of-experi-
ence, objective quality assessment, subjective quality assessment,
streaming video, video stalling.

I. INTRODUCTION

IN THE past decade, there has been a tremendous growth in
streaming media applications, thanks to the fast development

of network.services and the remarkable growth of smart mobile
devices. HTTP Live Streaming (HLS) [1], Silverlight Smooth
Streaming (MSS) [2], HTTP Dynamic Streaming (HDS) [3], and
Dynamic Adaptive Streaming over HTTP (DASH) [4] achieve
decoder-driven rate adaptation by providing video streams in
a variety of bitrates and breaking them into small HTTP file
segments. The media information of each segment is stored in
a manifest file, which is created at server and transmitted to
client to provide the specification and location of each segment.
Throughout the streaming process, the video player at the client
adaptively switches among the available streams by selecting
segments based on playback rate, buffer condition and instanta-
neous TCP throughput [5].
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Due to the increasing popularity of video streaming services,
users are continuously raising their expectations on better ser-
vices. A recent survey [6] carried out to investigate the user
preference on the type of video delivery services shows a dom-
inating role of QoE in the user choice over the other categories
such as content, timing, quality, ease-of-use, portability, interac-
tivity, and sharing. Another study [7] shows that global premium
content delivery networks lost $2.16 billion of revenue due to
poor quality video streams in 2012 and are expected to miss out
on an astounding $20 billion by 2017. The poor streaming expe-
rience has became a major threat to the video service ecosystem.
Therefore, achieving optimal QoE of end viewers has been the
central goal of modern video delivery services.

QoE for HTTP Adaptive Streaming (HAS) has been a rapidly
evolving research topic and has attracted an increasing amount
of attention from both industry and academia. As the humans are
the ultimate receiver of videos in most applications, subjective
evaluation is the most straightforward and reliable approach to
evaluate the QoE of streaming videos. A comprehensive sub-
jective user study has several benefits. First, it provides useful
data to study human behaviors in evaluating perceived quality
of streaming videos. Second, it supplies a test set to evaluate,
compare and optimize streaming strategies. Third, it is useful to
validate and compare the performance of existing objective QoE
models. Although such subjective user studies provide reliable
evaluations, they are inconvenient, time-consuming and expen-
sive. Most importantly, they are not applicable in the real-time
playback scheduling framework. Therefore, highly accurate,
low complexity objective models are desirable to enable effi-
cient design of quality-control and resource allocation protocols
for media delivery systems. Over the past decade, substantial ef-
fort has been made to develop objective QoE models [8]–[22].
Most of them are designed for specific applications such as
static video quality assessment or progressive video streaming.
Furthermore, little work has been done to compare them with
subjective data comprising a wide variety of video sequences.

In this work, we aim to design an objective QoE model that
accounts for both the presentation quality variations and the
impact of stalling experience in streaming videos. Our major
contributions are threefold. First, we construct a video database
dedicated to the combined effect of initial buffering, stalling and
video compression on QoE, which is one of the first publicly
available databases of its kind. Second, we investigate the
interactions between video presentation quality and playback
stalling. Our experiments show that the video presentation qual-
ity of the freezing frame exhibits interesting relationship, which
has not been observed before, with the dissatisfaction level of
the stalling event. Third, we formulate a joint video streaming
QoE model that incorporates both the video presentation quality
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and the influence of playback stalling. Experiments on the
benchmark database show that the proposed model significantly
outperforms existing QoE models. The instantaneous QoE pre-
diction is ideal for the optimization of media streaming systems.

II. RELATED WORK

A. Subjective QoE Studies

A significant number of subjective QoE studies have been
conducted to understand the perceptual impact of different types
of impairments on HAS. Two excellent surveys on QoE subjec-
tive study can be found in [23] and [24]. Here we only provide
a brief overview: Pastrana et al. [25] made one of the first at-
tempts to measure the impact of stalling in video streaming
services. The study showed that QoE is influenced by both the
duration and the frequency of stalling events and was confirmed
by Qi et al. [26] and Moorthy et al. [27]. Among those findings,
the most important one is that viewers tend to prefer videos
that have less number of freeze events (even if they are relative
longer) to videos that have a sequence of short freezes through
time. Besides, Qi et al. [26] also found that a stalling of frame-
level duration could not be perceived, and thus has no impact on
QoE. Staelens et al. [28] extended Qi’s research and conclude
that isolated stallings up to approximately 400 ms is acceptable
to the end-users. Moorthy et al. [27] investigated the trade-off
between stalling and quality switching. While many studies [29],
[30] assumed that stalling events are more annoying than qual-
ity switches, the results in [27] showed that few stalling events
are not yielding worse quality than downward quality switches.
Hoßfeld et al. [31] and Sackl et al. [32] found fundamental dif-
ferences between initial delays and stalling. Unlike initial delay
which is somewhat expected by today’s consumers, stalling in-
vokes a sudden unexpected interruption and distort the temporal
video structure. Hence, stalling is processed differently by the
human sensory system, i.e., it is perceived much worse [33].
Garcia et al. [34] investigated the quality impact of the com-
bined effect of initial loading, stalling, and compression for high
definition sequences, from which they observed an additive im-
pact of stalling and compression on perceived QoE. Besides
the effect of video impairment itself, Seshadrinathan et al. [35]
described a hysteresis effect in a recent study of time-varying
video quality. In particular, an unpleasant viewing experience
in the past tends to penalize the QoE in the future and affect the
overall QoE.

Based on these subjective user studies, one may conclude
that: 1) video presentation quality, duration and frequency of
stalling are the key factors contributing towards the overall QoE;
2) Although very short stalling may not be perceived and thus
has little impact on QoE, visible stalling events can severely de-
grade QoE; 3) Viewers are much more tolerant to initial buffer-
ing than stalling; 4) An unpleasant viewing experience in the
past tends to penalize future QoE.

B. Existing Objective QoE Models

The existing QoE models can be roughly categorized as
follows:

1) Signal Fidelity Measurement
Objective VQA approaches tackle the QoE problem from
a signal fidelity point of view to provide computational
models that can automatically predict video presentation
quality. In practice, for the sake of operational conve-
nience, bitrate and Quantization Parameter (QP) are of-
ten used as the indicators of video presentation quality
[1]–[4]. However, using the same bitrate or QP to encode
different video content can lead to drastically different vi-
sual quality. In addition, different encoders operate at the
same bitrate or QP but different operational or complex-
ity modes can also cause large quality variations in the
compressed video streams. In order to have a better esti-
mation of the user perceived QoE, it is desired to assess
the raw video. For this purpose, the simplest and most
widely used VQA measures are the mean squared error
(MSE) and peak signal-to-noise ratio (PSNR), which are
easy to calculate and mathematically convenient, but un-
fortunately do not correlate well with perceived visual
quality [36]. Research in perceptual VQA [37], [38] has
been drawing significant attention in recent years, ex-
emplified by the success of the structural similarity in-
dex (SSIM) [8], the multi-scale structural similarity index
(MS-SSIM) [9], motion-based video integrity evaluation
index (MOVIE) [10], video quality metric (VQM) [11]
and SSIMplus [12]. State-of-the-art VQA models employ
human visual system features in quality assessment, and
thus provide perceptually more meaningful prediction.
Nevertheless, all of these models are only applicable
when the playback procedure can be accurately controlled.
However, video streaming services, due to network im-
pairments, may suffer from playback issues that could
significantly degrade user QoE. How modern VQA mod-
els can be used in the context of HAS is still an open
problem.

2) QoE Prediction via Quality-of-Service (QoS)
The philosophy behind this type of approach is that there
exists an causal relationship between generic QoS prob-
lems (e.g, loss, delay, jitter, reordering and throughput
limitations) and generic QoE problems (e.g., glitches, arti-
facts and excessive waiting time) [39]. Therefore, QoE can
be easily quantified once the mapping function between
QoS and QoE is known. Thanks to the reliability of TCP,
HAS is immune to glitches and artifacts introduced by
packet drop. Thus, most existing research in this direction
are dedicated to stalling experience quantification.
Watanabe et al. [13] attempt to quantify streaming video
QoE based on playback stallings. They observed a loga-
rithmic relationship between the global length of stalling
events and QoE. Mok et al. [40] associated the length
and frequency of stalling to QoE with a linear function.
Hoßfeld et al. [14], [15], [39] demonstrated the superior-
ity of exponential mapping functions in many streaming
applications. Although the global QoS statistics-based
QoE models are computationally efficient, they ignore
the importance of temporal factors. Rodriguez et al. [17]
consider the pattern of jitter and local content importance
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by subjective training of the content. Yeganeh et al. [18]
quantify the stalling experience with a raised cosine
function and the recovery of satisfaction level during the
playback state with a linear model. Deepti et al. [19]
employ a Hammerstein-Wiener model using the stalling
length, the total number of stalling events, the time since
the previous stall, and the inverse stalling density as
the key features to predict the instantaneous experience
at each moment. The stalling experience quantification
approach is only adequate in the progressive download
services because it is unable to measure the experience
loss of video quality. However, in HAS, a source video
is always encoded into multiple representations, which
have different presentation quality.

3) Hybrid Approach
Apparently both video presentation quality and stalling
experience quantification capture important aspects in
QoE. Unfortunately, very few approaches incorporate the
two aspects into a unified model. Ricardo et al. [22] ap-
proximated the effect of frame drop and image sharpness
separately, and took the product of the two terms to pre-
dict the overall QoE. Singh et al. [20] tried to solve this
problem by training a random neural network [41] using
QP, frequency, average and maximum duration of stalling
events as input features. Xue et al. [21] estimated the
video presentation quality by QP and weighted the im-
pact of stalling by packet bit count as an indicator of
motion complexity. Both algorithms define video presen-
tation quality as a function of QP, which has been proven
to be a poor perceptual quality indicator.

Despite the demonstrated success, most existing QoE pre-
dictors either underestimate the effect of perceptual video pre-
sentation quality or simply equate it to bitrate or QP. More
importantly, one common assumption of all these approaches
is that there is no interaction between video presentation qual-
ity and stalling experience, which has not been systematically
examined.

III. SUBJECTIVE QUALITY-OF-EXPERIENCE USER STUDY OF

STREAMING VIDEOS

To the best of our knowledge, current publicly available
databases are dedicated to either video presentation quality that
is affected by compression, channel transmission losses, scaling,
or the impact of stalling in terms of its occurring position, dura-
tion, and frequency. However, QoE of streaming video should
be a joint effect of the video presentation quality and playback
stalling. Although the combined effect of stalling and video bi-
trate has been investigated by Garcia et al. [34], the study suffers
from the following problems: (1) the dataset is of insufficient
size (6 source sequences); (2) bitrate is not a good indicator
of video presentation quality as discussed in the Section II-B;
and (3) the database is not publicly available. Therefore, our
goal is to develop a dedicated database to study the interac-
tion between stalling effect and presentation quality for video
streaming.

TABLE I
INFORMATION OF REFERENCE VIDEOS

Index Name Frame Rate Description

a Animation 25 animation, high motion
b Biking 50 human, outdoor
c BirdsOfPrey 30 natural, static
d ButterFly 25 natural, outdoor
e CloudSea1 24 architecture, static
f CloudSea2 24 outdoor, high motion
g CostaRica1 25 natural, static
h CostaRica2 25 natural, static
i Football1 25 human, high motion
j Football2 25 human, high motion
k Football3 25 human, high motion
l Forest1 25 natural, static
m Forest2 25 natural, outdoor
n MTV 25 human, indoor
o Ski 30 outdoor, high motion
p Squirrel 25 animation, outdoor
q Transformer1 24 human, static
r Transformer2 24 human, architecture
s Basketball1 25 human, high motion
t Basketball2 25 human, high motion

A. Video Database and Subjective User Study

A video database, named streaming video QoE database, of 20
pristine high-quality videos of size 1920 × 1080 are selected to
cover diverse content, including humans, plants, natural scenes,
architectures and computer-synthesized sceneries. All videos
have the length of 10 s [42]. The detailed specifications of
those videos are listed in Table I and a screenshot from each
video is included in Fig. 1. Using aforementioned sequences
as the source, each video is encoded into three bitrate levels
(500 Kbps, 1500 Kbps, 3000 Kbps) with x264 encoder to cover
different quality levels. The choices of bitrate levels are based
on commonly-used parameters for transmission of HD videos
over networks. A 5-s stalling event is simulated at either the
beginning or the middle point of the encoded sequences. The
stalling indicator was implemented as a spinning wheel. In total,
we obtain 200 test samples that include 20 source videos, 60
compressed videos, 60 initial buffering videos, and 60 mid-
stalling videos.

The subjective testing experiment is setup as a normal in-
door home settings with ordinary illumination level, with no
reflecting ceiling walls and floors. All videos are displayed at
their actual pixel resolution on an LCD monitor at a resolution of
2560× 1600 pixel with Truecolor (32 bit) at 60 Hz. The monitor
is calibrated in accordance with the recommendations of ITU-T
BT.500 [43]. A customized graphical user interface is used to
render the videos on the screen with random order and to record
the individual subject ratings on the database. The study adopts a
single-stimulus quality scoring strategy. A total of 25 naı̈ve sub-
jects, including 13 males and 12 females aged between 22 and
30, participate in the subjective test. Visual acuity (i.e., Snellen
test) and color vision (i.e., Ishihara) are confirmed from each
subject before the subjective test. A training session was per-
formed before the data collection, during which, 4 videos (of 1.
pristine quality video, 2. 500 Kbps encoded video, 3. video with
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Fig. 1. Subjective test sequences.

initial buffering, and 4. video with stalling) were presented to the
subjects. We used the same methods to generate the videos used
in the training and testing sessions. Therefore, subjects knew
what distortion types would be expected before the test session,
and thus learning effects are kept minimal in the subjective ex-
periment. Subjects were instructed with sample videos to judge
the overall visual quality considering both picture distortion ar-
tifacts and video freezes as quality degradation factors. The sub-
jects are allowed to move their positions to get closer or farther
away from the screen for better observation. For each subject,
the whole study takes about one and half hour, which is divided
into three sessions with two 7-min breaks in-between. In order to
minimize the influence of fatigue effect, the length of a session
was limited to 25 min. The choice of a 100-point continuous
scale as opposed to a discrete 5-point ITU-R Absolute Category
Scale (ACR) has advantages: expanded range, finer distinctions
between ratings, and demonstrated prior efficacy [44].

A common dilemma in every subjective video quality experi-
ment is how much instruction should be given to the subjects. In

practice, humans are often attracted by video content rather than
quality variations. But to collect quality scores, certain instruc-
tion has to be given to the subjects in order to obtain their opin-
ions on video quality. On the other hand, if too much instruction
is given, the subjects may be over-educated to give “clean” but
unrealistic scores. In our study, to give uniform instruction to all
subjects, and to investigate the interactions between presenta-
tion quality and delay/stalling, we find it necessary to inform the
subjects about what types of quality degradations they should
expect to see. Other than that, no further specifications are given.

Since the break between successive test sessions is consider-
ably short, alignment on the subjective scores is not performed.
In other words, raw subjective scores are used in the subsequent
analysis. After the subjective user study, two outliers are re-
moved based on the outlier removal scheme suggested in [43].
The final quality score for each individual image is computed
as the average of subjective scores, namely the mean opinion
score (MOS), from all valid subjects. Considering the MOS as
the “ground truth”, the performance of individual subjects can
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Fig. 2. PLCC and SRCC between individual subject rating and MOS. Right-
most column: Performance of an average subject.

be evaluated by calculating the correlation coefficient between
individual subject ratings and MOS values for each image set,
and then averaging the correlation coefficients of all image sets.
The Pearson linear correlation coefficient (PLCC) and Spear-
man’s rand-order correlation coefficient (SRCC) are employed
as comparison criteria, whose range is from 0 to 1 and higher
values indicate better performance. They can be computed for
each subject and their values for all subject are depicted in
Fig. 2. It can be seen that each individual subject performs well
in terms of predicting MOSs. The average performance across
all individual subjects is also given in the rightmost column
in Fig. 2. This provides a general idea about the performance
of an average subject. Therefore, we conclude that considerable
agreement is observed among different subjects on the perceived
quality of the test video sequences.

B. Subjective Data Analysis

One of the main objectives of this subjective experiment is
to investigate whether the impact of the stalling events are in-
dependent of the video presentation quality. If the answer is
yes, then regardless of the video presentation quality, stallings
will have the same impact on the overall QoE scores. Assuming
an additive relationship between stalling and video presentation
quality as in [34], we are expecting a near constant MOS drop

Fig. 3. SSIMplus of stalling frames versus MOS drop.

across different video presentation quality when a stalling event
occurs in the middle of the sequences.

Fig. 3 shows a scatter plot of the instantaneous quality of
the freezing frame predicted by SSIMplus [12] and the MOS
degradation for both initial delay and playback stalling. It can
be observed that for the stalling at the same temporal instance
and of the same duration, human subjects tend to give a higher
penalty to the video with a higher instantaneous video presen-
tation quality at the freezing frame. We further performed a
statistical significance test as follows. Denoting the SSIMplus
score of the initial buffered/stalling frame, and the MOS drop
of the test video with initial buffering/stalling as random vari-
ables X1 /X2 and Y1 /Y2 , we specify the null hypotheses H1 /H2
as that X1 /X2 is uncorrelated with Y1 /Y2 . The test statistic is
t = r

√
N −2

1−r 2 , where r and N are the correlation coefficient and
the number of samples, respectively. The resulting test statistic
is used to compute the P -values by referring to a t-distribution
with N − 2 degrees of freedom. Since the P -values (6.32 ×
10−8 for initial buffering and 6.87 × 10−13 for stalling) are
much smaller than the significance level 0.05, we reject the null
hypotheses in favor of the alternatives. The results suggest that
there is sufficient evidence at the 0.05 significance level to con-
clude that there is a linear relationship in the population between
the SSIMplus score (estimation of the presentation quality) of
the initial buffered/stalling frame and the QoE drop. This phe-
nomenon was not observed in previous studies. One explanation
may be that there is a higher viewer expectation when the video
presentation quality is high, and thus the interruption caused by
stalling make them feel more frustrated.

C. Performance of Existing Objective QoE Models

Using the above database, we test the performance of four ex-
isting VQA models, including PSNR, SSIM [8], MS-SSIM [9]
and SSIMplus [12] and four state-of-the-art QoE models [15],
[17], [21], [40]. The implementations for the VQA models are
obtained from the original authors and we implement four QoE
models since they are not publicly available. For the purpose
of fairness, all models are tested using their default parame-
ter settings. In order to compare the performance of VQA and
stalling-based QoE models, the quality of video without stalling
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TABLE II
COMPARISON OF THE EXISTING QOE METHODS

Stalling Presentation quality

QoE models Regression function Influencing factors Regression function Influencing factors

FTW [15] exponential stalling length, # of stalling N/A N/A
Mok’s [40] linear stalling length, N/A N/A

stalling frequency,
initial buffering length

VsQM [17] exponential average stalling length per segment, N/A N/A
# of stalling per segment,

period per segment
Xue’s [21] logarithmic stalling length, linear QP

# of stalling,
bit count of the stalling segment

Fig. 4. SQI at different number of stalling events.

are estimated by VQA and the result is applied to the same
video with stalling events. For the hybrid model in [21], the
model parameter c is not given in the original paper. We set
c = 0.05 such that the model achieves its optimal performance
on the current database. A comparison of the four QoE models
is shown in Table II. Three criteria are employed for perfor-
mance evaluation by comparing MOS and objective QoE. Some
of the criteria are included in previous tests carried out by the
video quality experts group [45]. Other criteria are adopted in
previous study [46]. These evaluation criteria are: 1) PLCC after
a nonlinear modified logistic mapping between the subjective
and objective scores [46]; 2) SRCC; 3) Mean absolute error
(MAE) after the non-linear mapping. Among the above metrics,
PLCC and MAE are adopted to evaluate prediction accuracy,
and SRCC is employed to assess prediction monotonicity [45].
A better objective VQA measure should have higher PLCC
and SRCC while lower MAE values. Figs. 6–8 summarize the
evaluation results, which is somewhat disappointing because
state-of-the-art QoE models do not seem to provide adequate
predictions of perceived quality of streaming videos. Even the
model with the best performance is only moderately correlated
with subjective scores. These test results also provide some
useful insights regarding the general approaches used in QoE
models. First, the hybrid model [21] significantly outperforms
QoS-QoE correlation models. This suggests that the importance

of video presentation quality in QoE should not be underesti-
mated. Second, even though modern VQA models cannot cap-
ture the experience loss of stalling, most of them performs rea-
sonably well on the streaming video QoE database. These ob-
servations suggest a hybrid model that equips VQA methods as
the video quality predictor would be more promising in QoE
estimation.

IV. OBJECTIVE QUALITY-OF-EXPERIENCE MODEL OF

STREAMING VIDEOS

Motivated by the observation and analysis provided in the pre-
vious section, we develop a unified QoE prediction model named
Streaming QoE Index (SQI) by incorporating the video presen-
tation quality and the impact of initial buffering and stalling
events. In particular, we consider QoE as a combined experi-
ence of video presentation quality, stalling experience and their
interaction.

A. Video Presentation Quality

For each frame in the streaming video, its instantaneous video
presentation quality Pn can be estimated at the server side by a
frame-level VQA model before transmission

Pn = V (Xn,Rn ) (1)

where Xn and Rn are the n-th frame of the streaming video and
pristine quality video, and V (·) is a full reference VQA operator.
The computed quality score V (Xn,Rn ) can either be embed-
ded into the manifest file that describes the specifications of the
video, or carried in the metadata of the video container. Cur-
rently, the development of the next-generation ISO base media
file format that incorporates time-varying video quality metric is
ongoing [47]. The manifest or metadata file is transmitted to the
client side such that its information is available to the client. In
commonly used streaming protocols such as MPEG-DASH, the
partially decoded frame will not be sent for rendering, and thus
viewers will see the last successfully decoded frame during the
stalling interval. Thus, for a stalling moment n in the interrup-
tion period [i, j], the video presentation quality at the instance,
Pn , is the same as the quality of the last decoded frame

Pn = Pi−1 . (2)
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Fig. 5. An illustrative example of and channel responses at each frame.
(a) Video presentation quality of the static video at each frame. ‘*’ indicates the
position of stalling. (b) Video presentation quality of the streaming video during
playback at each frame. ‘*’ indicates the position of stalling and ‘o’ indicates
the position of recovery. (c) QoE drop due to each stalling events at each frame.
The solid curve shows the QoE drop due to initial buffering and the dashed
curve shows the QoE drop due to playback stalling. (d) Overall QoE at each
time instance during playback.

Fig. 6. PLCC of QoE models on streaming video QoE database.

Fig. 7. SRCC of QoE models on streaming video QoE database.

B. Stalling Experience Quantification

To simplify the formulation, we assume the influence of each
stalling event is independent and additive. As such, we can ana-
lyze each stalling event separately and compute the overall effect
by aggregating them. Note that each stalling event divides the
streaming session time line into three non-overlapping intervals,
i.e., the time intervals before the stalling, during the stalling, and
after the stalling. We will discuss the three intervals separately
because the impact of the stalling event on each of the intervals
are different.
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Fig. 8. MAE of QoE models on streaming video QoE database.

First, we assign zero penalty to the frames before the stalling
occurs when people have not experienced any interruption. Sec-
ond, as a playback stalling starts, the level of dissatisfaction
increases as the stalling goes on till playback resumes. The
study on the impact of waiting time on user experience in queu-
ing services [48] has a long history from both an economic and
a psychological perspective, and has been recently extended
to quantify the relationship between QoE and QoS in adaptive
streaming [39]. The exponential decay function has been suc-
cessfully used in previous studies [14], [15], [39]. The use of
exponential decay assumes an existence of QoE loss satura-
tion to the number and length of stalling, and low tolerance to
jitters comparing to the other commonly used utility function
such as logarithm and sigmoid. Here we approximate the QoE
loss due to a stalling event with an exponential decay function
similar to [14], [15], [39]. Third, QoE also depends on a be-
havioural hysteresis “after effect” [35]. In particular, a previous
unpleasant viewing experience caused by a stalling event tends
to penalize the QoE in the future and thus affects the overall
QoE. The extent of dissatisfaction starts to fade out at the mo-
ment of playback recovery because observers start to forget the
annoyance. To model the decline of memory retention of the
buffering event, we employ the Hermann Ebbinghaus forgetting
curve [49]

M = exp
{
− t

T

}
(3)

where M is the memory retention, T is the relative strength of
memory, and t is the time instance.

Assume that the k-th stalling event locates at [ik , ik + lk ],
where lk is the length of stall, a piecewise model is constructed

to estimate the impact of each stalling event on the QoE

Sk (t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pik −1

(
−1 + exp

{
−

(
tf − ik

T0

)})
ik

f ≤ t ≤ ik + lk
f

Pik −1

(
−1 + exp

{
−

(
lk
T0

)})

·
(

exp
{
−

(
tf − ik − lk

T1

)})
t > ik + lk

f

0 otherwise

(4)

where f is the frame rate in frames/second, and T0 , T1 and
Sk (t) represent the rate of dissatisfaction, the relative strength
of memory and the experience of the k-th stalling event at time
t, respectively. Pik −1 , the scaling coefficient of the decay func-
tion, has two functions: 1) it reflects the viewer expectation to
the future video presentation quality, and 2) it normalizes the
stalling effect to the same scale of VQA kernel. This formula-
tion is qualitatively consistent with the relationship between the
two QoE factors discussed in the previous section. In addition,
since the impact of initial buffering and stalling are different,
we have two sets of parameters: {T init

0 , T init
1 } for initial delay

and {T0 , T1} for other playback stallings, respectively. We also
assume the initial expectation P0 is a constant. In this way, the
initial buffering time is proportional to the cumulated experience
loss.

The instant QoE drop due to stalling events is computed by
aggregating the QoE drop caused by each stalling event and is
given by

S(t) =
N∑

k=1

Sk (t) (5)

where N is the total number of stalling events.
An important fact we have learned from the previous sub-

jective study [27] is that the frequency of stalling negatively
correlates with QoE for a streaming video of constant quality,
sufficient length, and a fixed total length of stalling L. Although
not explicitly defined in the expression, it can be shown that
the effect of stalling frequency can be captured by the pro-
posed model with a deliberate parameter selection. To see that,
we first adopt the aforementioned test condition in [27] and
assume Pn = C, where C is a positive constant. Then, the end-
of-process QoE of the proposed model is fully determined by
experience loss of stalling, which becomes a function of stalling
frequency only. When the total length of stalling L is fixed and
assume equal length of each individual stall, then the length of
each stall is L/N , and the stalling frequency is inverse propor-
tional to the total number of stalls N . Thus, we only need to
check whether the cumulated QoE drop over all time

G(N) =
∫ ∞

−∞
S(t)dt, for lk =

L

N
, k = 1, 2, ..., N (6)
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is monotonically decreasing with respect to N . By substituting
(4) and (5) into (6), we can simplify the expression as

G(N) = C (T1 − T0)
{

N exp
[
−

(
L

NT0

)]
− N

}
− CL

for N ≥ 1, T0 > 0, T1 > 0, L > 0.

(7)

Let g(x) = x exp{−( L
xT0

)} − x, it is not hard to verify dg (x)
dx <

0,∀x ≥ 1. Therefore, the model is able to implicitly account for
the effect of stalling frequency as long as T1 > T0 .

In addition, we have also learned from previous subjective
study [14] that the impact of stalling tends to saturate with
the increase of the number of stalling events at a constant
quality setting. Interestingly, with the independent and addi-
tive assumption, SQI is still able to predict that the overall
QoE has an exponential-like response for each addition stalling
event. To understand this, let us denote the video presenta-
tion quality of each frame/segment, the length of static video
in seconds, the duration of each stalling events, the number
of stalling events, and the overall QoE by Pn , T , Ts , N , and
Q, respectively. In [14], the authors performed their subjec-
tive study with a constant quality setting, i.e., Pn = P . Ac-
cording to (2), the video presentation quality that caused by
the stalling events changes from Pn = P,∀n ∈ [0, T ] to Pn =
P,∀n ∈ [0, T + NTs ]. According to (5), the overall stalling ex-
perience is NSk (Ts),∀k ∈ [1, N ]. Thus, the overall QoE can
be represented as Q = (T +N Ts )P +N Sk (Ts )

T +N Ts
. We plot Q with re-

spect to N on a 5-point absolute category rating (ACR) scale
in Fig. 4, where it can be observed that the influence of each
additional stalling event follows an exponential-like decreasing
pattern in SQI.

In real-world applications, to measure the impact of stalling
at individual frames, we convert the continuous function in (5)
into its discrete form by sampling the function at each discrete
time instance n:

Sn = S

(
n

f

)
. (8)

C. Overall QoE

The instantaneous QoE at each time unit n in the streaming
session can be represented as the aggregation of the two channels

Qn = Pn + Sn . (9)

In practice, one usually requires a single end-of-process QoE
measure. We use the mean value of the predicted QoE over the
whole playback duration to evaluate the overall QoE. To reduce
the memory usage, the end-of-process QoE can be computed in
a moving average fashion

An =
(n − 1)An−1 + Qn

n
(10)

where An is the cumulative QoE up to the n-th time instance
in the streaming session. An example of each channel and the
final output of the model is illustrated in Fig. 5.

TABLE III
SQI PARAMETERS

Parameter Description

T0 rate of dissatisfaction in stalling event
T1 strength of memory in stalling event
T in i t

0 rate of dissatisfaction in initial buffering event
T in i t

1 strength of memory in initial buffering event
P0 expectation on initial quality of the video

D. Implementation Details

Throughout the paper, the proposed SQI uses the following
parameter settings: T init

0 = 2, T init
1 = 0.5, T0 = 1, T1 = 1.2

and P0 = 0.8 · |(V (·)|, where |V (·)| is the dynamic range of
adopted VQA kernel, e.g. PSNR ranges from 0 to infinity (in the
actual computation, we set the range of PSNR to 0–50); SSIM
and MS-SSIM range from −1 to 1; and SSIMplus ranges from
0 to 100. These values are somewhat arbitrary, but we find that
in our current experiments, the performance of the SQI is fairly
insensitive to variations of T init

0 , T init
1 , T0 and T1 at least within

an order of magnitude of the parameter values. P0 is rather
insensitive from 0.5|(V (·)| (Xue’s [21] selection) to |(V (·)|. The
parameters are summarized in the Table III. Note that the initial
buffering parameters do not have to satisfy the stalling frequency
because it cannot occur more than once in one session. In real-
world applications, the proposed scheme may include two step
computations on the client side. First, stalling events are detected
in the video player. A straightforward way to detect stalling
events is to inspect the player progress every x milliseconds,
e.g. 50. If the player has not advanced as much as it is expected
to, then we can infer a stalling has occurred. By taking the
difference between the expected progress and actual progress,
the duration and frequency of stalling can be measured reliably.
In the second step, which is only necessary in the applications
that require an end-of-process score, is the computation of the
QoE cumulation. Both steps demand minimum computation and
can be updated in real time. Moreover, the instantaneous QoE
prediction is a valuable property for many applications such
as live streaming quality monitoring and adaptive streaming
decision making.

V. VALIDATION

To the best of our knowledge, there is no other subject-rated
publicly available video database that have a combination of
compression distortion, initial buffering, and stalling events.
Thus, we validate SQI model using the streaming video QoE
database described in Section III and compare its performance
against eight existing objective QoE models. Among the eight
QoE models, four VQA algorithms including PSNR, SSIM [8],
MS-SSIM [9] and SSIMplus [12], are employed as the frame-
level video presentation quality measures. They also provide
useful baseline comparisons. PLCC, SRCC and MAE are cal-
culated to evaluate the performance of all QoE models. The
performance comparison results are provided in Figs. 6–8, re-
spectively. It can be seen that the proposed method delivers the
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Fig. 9. Predicted QoE versus MOS.

best performance in predicting subjective QoE on the streaming
video QoE database with both compression and frame-freeze
impairment.

Fig. 9 shows the scatter plots of the MOS prediction results for
each QoE model. The existing QoE models, presentation VQA
quality with and without incorporating the proposed methods
are listed in the first, second and third columns, respectively.
We have two observations here. First, the proposed SQI mod-
els significantly outperform their baseline presentation VQA

models. It is obvious that a higher compactness in the scatter
plots is achieved by applying the proposed model, which adds
proper penalties for initial buffering and stalling in addition to
the presentation quality impairment. Second, the best perfor-
mance is obtained by combining the proposed method with the
SSIMplus [12] VQA model.

To ascertain that the improvement of the proposed model is
statistically significant, we carry out a statistical significance
analysis by following the approach introduced in [46]. First, a
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TABLE IV
STATISTICAL SIGNIFICANCE MATRIX BASED ON F-STATISTICS ON THE STREAMING VIDEO QOE DATABASE

FTW Mok’s VsQM Xue’s PSNR SSIM MS-SSIM SSIMplus SQI- SQI- SQI- SQI-
[15] [40] [17] [21] [8] [9] [12] PSNR SSIM MS-SSIM SSIMplus

FTW [15] - - - 0 0 0 0 0 0 0 0 0
Mok’s [40] - - - 0 0 0 0 0 0 0 0 0
VsQM [17] - - - 0 0 0 0 0 0 0 0 0
Xue’s [21] 1 1 1 - 1 - - - 1 0 0 0
PSNR 1 1 1 0 - 0 0 0 - 0 0 0
SSIM [8] 1 1 1 - 1 - - - 1 0 - 0
MS-SSIM [9] 1 1 1 - 1 - - - 1 0 0 0
SSIMplus [12] 1 1 1 - 1 - - - 1 0 - 0
SQI-PSNR 1 1 1 0 - 0 0 0 - 0 0 0
SQI-SSIM 1 1 1 1 1 1 1 1 1 - - -
SQI-MS-SSIM 1 1 1 1 1 - 1 - 1 - - -
SQI-SSIMplus 1 1 1 1 1 1 1 1 1 - - -

A symbol “1” means that the performance of the row model is statistically better than that of the column model, a symbol “0” means that the row model is
statistically worse, a symbol “-” means that the row and column models are statistically indistinguishable.

nonlinear regression function is applied to map the objective
quality scores to predict the subjective scores. We observe that
the prediction residuals all have zero-mean, and thus the model
with lower variance is generally considered better than the one
with higher variance. We conduct a hypothesis testing using
F-statistics. Since the number of samples exceeds 50, the Gaus-
sian assumption of the residuals approximately hold based on
the central limit theorem [50]. The test statistic is the ratio of
variances. The null hypothesis is that the prediction residuals
from one quality model come from the same distribution and
are statistically indistinguishable (with 95% confidence) from
the residuals from another model. After comparing every pos-
sible pairs of objective models, the results are summarized in
Table IV, where a symbol ‘1’ means the row model performs
significantly better than the column model, a symbol ‘0’ means
the opposite, and a symbol ‘-’ indicates that the row and column
models are statistically indistinguishable. It can be observed
that most existing QoE models are statistically indistinguishable
from each other, while the proposed model is statistically better
than all other methods on the streaming video QoE database.

It can be observed from the experiments that the QoS-based
QoE models [15], [17], [40] do not perform well on the database.
The major reason is that QoS-based models (i.e., FTW [15],
Mok’s [40], and VsQM [17]), do not take the presentation qual-
ity of the videos into consideration except for their bitrates. A
common “mistake” is to equate bitrate with quality, or assume
a constant bitrate implies a constant presentation quality. This
is highly problematic because videos coded at the same bitrate
but of different content could have drastically different presen-
tation quality. This is often the most dominant QoE factor, and
in many cases all other factors (such as stalling) become only
secondary. Indeed, this is quite apparent from our test results,
where even PSNR, a very crude presentation quality measure
that does not take into account any initial buffering or stalling at
all, performs significantly better than QoS-based methods that
ignore presentation quality. By contrast, the proposed method
not only builds upon the most advanced presentation quality
model (e.g., SSIMplus, which has been shown to be much bet-
ter than PSNR and other VQA measures), but moves one step

further by capturing the interactions between video presentation
quality and the impact of stalling.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a subjective study to understand human
visual QoE of streaming video and proposed an objective model
to characterize the perceptual QoE. Our work represents one
of the first attempts to bridge the gap between the presentation
VQA and stalling-centric models in QoE prediction. The subjec-
tive experiment reveals some interesting relationship between
the impact of stalling and the instantaneous presentation quality.
The experiments also demonstrate that the proposed SQI model
is simple in expression and effective in performance.

Future research may be carried out in many directions. First,
although we have tried our best to construct a database that
comprise as many content type as possible, the experiment is by
no means exhaustive. A comprehensive subject-rated database
that consists of more content types, stalling patterns and video
quality variations is desired to better understand the behaviors
of human viewers and to examine the performance of existing
objective QoE methods. Second, how to quantify the influence
of the semantics of stalling position, and how to incorporate it
into QoE models should be studied. Third, how to quantify the
quality switching experience and its possible interactions with
other QoE influencing factors needs to be exploited. Fourth,
how to integrate the QoE model into the adaptive streaming
decision making engine for optimal playback control is another
challenging problem that is worth further investigations.
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