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Abstract— Tone mapping operators (TMOs) aim to compress
high dynamic range (HDR) images to low dynamic range (LDR)
ones so as to visualize HDR images on standard displays. Most
existing TMOs were demonstrated on specific examples without
being thoroughly evaluated using well-designed and subject-
validated image quality assessment models. A recently proposed
tone mapped image quality index (TMQI) made one of the
first attempts on objective quality assessment of tone mapped
images. Here, we propose a substantially different approach
to design TMO. Instead of using any predefined systematic
computational structure for tone mapping (such as analytic image
transformations and/or explicit contrast/edge enhancement), we
directly navigate in the space of all images, searching for the
image that optimizes an improved TMQI. In particular, we first
improve the two building blocks in TMQI—structural fidelity
and statistical naturalness components—leading to a TMQI-II
metric. We then propose an iterative algorithm that alterna-
tively improves the structural fidelity and statistical naturalness
of the resulting image. Numerical and subjective experiments
demonstrate that the proposed algorithm consistently produces
better quality tone mapped images even when the initial images
of the iteration are created by the most competitive TMOs.
Meanwhile, these results also validate the superiority of TMQI-II
over TMQI.1

Index Terms— High dynamic range image, image quality
assessment, tone mapping operator, perceptual image processing,
structural similarity, statistical naturalness.

I. INTRODUCTION

THE luminance of a natural scene often has a high dynamic
range (HDR), varying between 10−3 to 105 cd/m2.

However, a normal digital display only has a low dynamic
range (LDR) about 102 cd/m2 [1]. Tone mapping oper-
ators (TMOs) fill in the gap between HDR imaging and
visualizing HDR images on standard displays by compressing
the dynamic range of HDR images [2]. TMOs provide a useful
surrogate for HDR display technology, which is currently still
expensive. Regardless of how fast HDR display technology
penetrates the market, there will be a strong need to prepare
HDR imagery for display on LDR devices [2]. In addition,
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compressing the dynamic range of an HDR image while
preserving its structural detail and natural appearance is by
itself an interesting and challenging problem for human and
computer vision study.

In recent years, many TMOs have been proposed [3]–[9].
Most of them were demonstrated on specific examples without
being thoroughly evaluated using well-designed and
subject-validated image quality assessment (IQA) models.
With multiple TMOs at hand, a natural question is: which
TMO produces the best quality tone mapped LDR image?
This question could possibly be answered by subjective
evaluation [10]–[13], which is expensive, time consuming,
and perhaps most importantly, can hardly be used to guide
automatic optimization procedures [14].

A promising approach is to develop objective IQA models
that can automatically evaluate the performance of TMOs.
Traditional objective IQA metrics such as peak signal-to-noise
ratio and the structural similarity index (SSIM) [14]–[16]
assume that the reference and compared images have the same
dynamic range; thus they are not applicable in this scenario.
Some attempts have been made for objectively assessing
the quality of HDR images. The HDR visible difference
predictor [17] tries to predict the visible difference between
two HDR images with the same dynamic range. A dynamic
range independent quality measure [18] focuses on detecting
the loss of visible contrast, the amplification of invisible
contrast, and the reversal of visible contrast. It produces three
corresponding probability maps but does not integrate them
into an overall quality score. Recently, a tone mapped image
quality index (TMQI) is proposed [19], which consists of two
fundamental building blocks: structural fidelity and statistical
naturalness. The fundamental idea behind TMQI is that a
high quality tone mapped image should not only preserve the
structural details in the HDR image but also present a natural
appearance.

In this paper, we propose a novel TMO that utilizes an
improved TMQI as the optimization goal. Specifically, we first
develop an improved TMQI, namely TMQI-II, that overcomes
the limitations underlying the structural fidelity and statistical
naturalness components in TMQI. Experiments show that the
improved structural fidelity and statistical naturalness terms
better correlate with the subjective data. We then propose an
iterative optimization algorithm for tone mapping. Substan-
tially different from existing TMOs, we do not pre-define a
computational structure that involves analytic image transfor-
mations and/or explicit gradient/edge estimation and enhance-
ment operations. Instead, we directly operate in the space
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of all images. Starting from any given image as the initial
point, we move it towards the direction that improves TMQI-II.
In each iteration, we alternately improve the structural fidelity
and statistical naturalness of the resulting image. Numerical
and subjective experiments show that this iterative algorithm
consistently produces better quality tone mapped images even
when the initial images are created by the most competitive
state-of-the-art TMOs. Meanwhile, the superiority of TMQI-II
over TMQI is also verified through this process.

II. ITERATIVE TONE MAPPING BY OPTIMIZING TMQI-II

Let X and Y be the HDR image and the tone mapped LDR
image, respectively. TMQI suggests that a high quality tone
mapped image should achieve great structural fidelity with
respect to the HDR image and high statistical naturalness
simultaneously. The computation of TMQI is given by [19]

TMQI(X, Y) = a[S(X, Y)]α + (1 − a)[N(Y)]β, (1)

where S and N denote the structural fidelity and statistical
naturalness measures, respectively. The parameters α and β
determine the sensitivities of the two terms, and 0 ≤ a ≤ 1
adjusts the relative importance between them. Both S and N
are upper bounded by 1 and thus TMQI is also upper bounded
by 1.

As one of the first attempts on quality evaluation of
images across dynamic ranges, TMQI achieved remarkable
success, but as will be shown later, it also has significant
limitations. Here, we propose an improved TMQI, namely
TMQI-II, that overcomes the limitations to better corre-
late with subjective evaluations. Details of TMQI-II will be
elaborated later along with the discussions regarding the
structural fidelity and statistical naturalness components.

Assuming TMQI-II to be the quality criterion of tone
mapped images, the problem of optimal tone mapping can
be formulated as

Yopt = arg max
Y

TMQI-II(X, Y), (2)

where Y has a much lower dynamic range than X. Solving (2)
for Yopt is a challenging problem due to the complexity of
TMQI-II and the high dimensionality (the same as the number
of pixels in the image). Therefore, we resort to numerical
optimization and propose an iterative approach. Specifically,
given any initial image Y0, we move it towards the direction
in the space of images that improves TMQI-II. To accomplish
that, we first improve the structural fidelity S using a gradient
ascent method and then enhance the statistical naturalness
N by solving a parameter optimization problem for a point-
wise intensity transformation. These two steps constitute one
iteration and the iterations continue until convergence.

A. Structural Fidelity Update

The structural fidelity of TMQI is computed using a sliding
window across the entire image, which results in a quality map
that indicates local structural detail preservation. Let x and y
be two image patches within the sliding window in the HDR

and tone mapped images, respectively. The local structural
fidelity measure is defined as

Slocal(x, y) = 2σ̃x σ̃y + C1

σ̃ 2
x + σ̃ 2

y + C1
· σxy + C2

σxσy + C2
, (3)

where σx , σy and σxy denote the local standard
deviations (std) and covariance between the two corresponding
patches, respectively. C1 and C2 are two small positive
constants to avoid instability. The first component is modified
from the local contrast comparison term in SSIM [15].
It suggests that the HDR and tone mapped image patches
should keep the same contrast visibility; otherwise, the
contrast of the tone mapped image patch should be penalized,
which corresponds to either artificially creating visible
contrast or failing to preserve visible contrast. The second
component is the same as the structure comparison term in
SSIM [15]. The overall structural fidelity measure of the
image is computed by averaging all local structural fidelity
measures

S(X, Y) = 1

M

M∑

i=1

Slocal(xi , yi ), (4)

where xi and yi are the i -th patches in X and Y, respectively,
and M is the total number of patches.

In TMQI [19], to assess the visibility of local contrast, the
local std σ undergoes a nonlinear function motivated by a
contrast sensitivity model

σ̃ = 1√
2πθσ

∫ σ

−∞
exp

[
− (t − τσ )2

2θ2
σ

]
dt, (5)

where τσ is a threshold determined by the contrast sensitivity
function [20] and θσ = τσ /3 [21].

The above nonlinear function is limited in accurately assess-
ing the contrast visibility of HDR image patches. First, even
a small change in local patch of the HDR image (which
may result from the HDR camera noise) may contribute to a
significant σ value. When Eq. (5) effectively distinguishes the
visible and invisible local contrast in the tone mapped image,
it tends to label most patches, either visible or invisible in
the HDR image, as contrast visible. Fig. 1 illustrates this phe-
nomenon. The homogeneous areas such as the walls and the
wood board in the lower middle part of the image are correctly
predicted as contrast invisible in the tone mapped image but
mistakenly marked as contrast visible in the HDR image due to
oversensitivity to noise. This explains the corresponding dark
areas of the structural fidelity map in Fig. 1(b) (where brighter
indicates higher structural fidelity). Second, different local
patches in the HDR image may have substantially different
dynamic ranges, which correspond to different thresholds τσ .
In other words, a single τσ is insufficient to account for the
local contrast visibility of the HDR image.

The above analysis suggests that a contrast visibility
model adapted to local luminance levels is desired for the
HDR image. In particular, we follow [22] and choose σ/μ,
namely the coefficient of variation, as an estimate of local
contrast in the HDR image, where μ is the local mean. This
estimate is adapted to local luminance levels, and thus is qual-
itatively consistent with Weber’s law, which has been widely
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Fig. 1. Tone mapped “Belgium house” image and its structural fidelity maps. (a) Initial image created by Reinhard’s algorithm [3]. (b) and (c) Structural
fidelity maps generated by TMQI and TMQI-II respectively, where brighter indicates higher structural fidelity.

used to model luminance masking in the human visual system.
An additional benefit of this estimate is that it is invariant
to linear contrast stretch, which is a frequently used pre-
processing step for HDR images. The reason follows directly
from the local luminance adaptation that cancels out the scale
factors in the numerator and the denominator. Fig. 1(c) shows
an example of the structural fidelity map from the modified
structural fidelity term, which captures the contrast visibility of
the HDR and the tone mapped images more reasonably. Table I
also demonstrates the superiority of the modified structural
fidelity term on the subjective database [19] using Spearman’s
rank-order correlation coefficient (SRCC) and Kendall’s rank-
order correlation coefficient (KRCC) as the evaluation criteria.

Given the modified structural fidelity term, we adopt a
gradient ascent algorithm similar to [23] and [24] to improve
the structural fidelity of the resulting image Yk from the
k-th iteration. To do that, we compute the gradient of S(X, Y)
with respect to Y, denoted by ∇Y S(X, Y) and update the
image by

Ŷk = Yk + λ∇YS(X, Y)
∣∣∣
Y=Yk

, (6)

where λ is the step size. To compute the gradient ∇Y S(X, Y),
we start from the local structural fidelity and rewrite (3) as

Slocal(x, y) = A1 A2

B1 B2
, (7)

where

A1 = 2σ̃x σ̃y + C1 (8)

B1 = σ̃ 2
x + σ̃ 2

y + C1 (9)

A2 = σxy + C2 (10)

B2 = σxσy + C2. (11)

By treating both image patches as column vectors of
length Nw , we have the sample statistics given by

μy = 1

Nw
1T y (12)

σ 2
y = 1

Nw
(y − μy)

T (y − μy) (13)

σxy = 1

Nw
(x − μx )

T (y − μy), (14)

where 1 is a Nw-vector with all entries equal to 1. The gradient
of the local structural fidelity measure with respect to y can

then be expressed as

∇ySlocal(x, y) = (A′
1 A2 + A1 A′

2)

B1 B2

− (B ′
1 B2 + B1 B ′

2)A1 A2

(B1 B2)2 , (15)

where

A′
1 =∇y A1, B ′

1 =∇y B1, A′
2 =∇y A2, B ′

2 =∇y B2. (16)

Noting that

∇yσy = 1

Nwσy
(y − μy) (17)

∇yσxy = 1

Nw
(x − μx), (18)

we have

A′
1 = 2σ̃x∇yσ̃y

= 2σ̃x√
2πθσ

exp

[
− (σy − τσ )2

2θ2
σ

]
· ∇yσy

=
√

2

π

σ̃x

Nwθσ σy
exp

[
− (σy − τσ )2

2θ2
σ

]
(y − μy), (19)

B ′
1 = 2σ̃y∇yσ̃y

=
√

2

π

σ̃y

Nwθσ σy
exp

[
− (σy − τσ )2

2θ2
σ

]
(y − μy), (20)

A′
2 = 1

Nw
(x − μx), (21)

B ′
2 = σx∇yσy = σx

Nwσy
(y − μy). (22)

Plugging (8), (9), (10), (11), (19), (20), (21) and (22) into (15),
we obtain the gradient of local structural fidelity. Finally, we
compute the gradient of the overall structural fidelity measure
with respect to the tone mapped image Y by summing over
all the local gradients

∇Y S(X, Y) = 1

M

M∑

i=1

RT
i ∇y Slocal(x, y)

∣∣∣
x=xi ,y=yi

. (23)

where xi = Ri (X) and yi = Ri (Y) are the i -th image
patches, Ri is the operator that takes the i -th local patch
from the image, and RT

i places the patch back into the
corresponding location in the image.
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B. Statistical Naturalness Update

The statistical naturalness N in TMQI is constructed by
modeling the histograms of μ and σ of about 3000 natural
images by a Gaussian density function Pm and a Beta density
function Pd , respectively [19]. Based on the independence
characteristic of image brightness and contrast [22], the two
density functions are multiplied to obtain the overall statistical
naturalness measure [19]

N(Y) = 1

K
Pm Pd , (24)

where K is a normalization factor.
The above statistical naturalness model has two limitations.

First, Pm and Pd are assumed to be completely independent
of image content, which is an over simplification. The model
suggests that to be highly statistically natural, the tone mapped
image of dynamic range [0, 255] should have μ around 116
and σ around 65 which correspond to the peaks in Pm and Pd ,
respectively [19]. However, each image may have a different
μ and σ to look perfectly natural depending on its content.
Second, the model is derived from high quality images,
with no information about what an unnatural image may
look like.

Here we propose an image dependent statistical naturalness
model based on a subjective experiment to better quantify the
unnaturalness of tone mapped images. First, we estimate the
overall luminance and global contrast directly from the HDR
image, denoted by μe and σe, respectively. To do that, we
approximate the overall luminance level of the HDR image
to its log-mean luminance, which has been successfully used
in previous studies [3], [4], [25], [26]. The use of logarithmic
function assumes that most structural detail in the HDR image
live in a low dynamic range and thus it is reasonable to boost
lower luminance levels while compress higher luminance
levels. The quantity is computed by

Lx = exp

⎛

⎝ 1

|X|
∑

i, j

log (ε + X(i, j))

⎞

⎠, (25)

where X(i, j) is the luminance of the HDR image at location
(i, j), |X| is the cardinality and ε is a small positive constant
to avoid instability. Next, the luminance is scaled by

Xs(i, j) = k

Lx
X(i, j), (26)

where k is a luminance level related quantity typically set
between 0.09 and 0.36 for an HDR image with normal
luminance level [3]. μe and σe are then estimated by

μe = L

|X|

⎛

⎝
∑

i, j

Xs(i, j)

1 + Xs(i, j)

⎞

⎠ (27)

and

σe = 1

|X| − 1

∑

i, j

(
Xs(i, j)

1 + Xs(i, j)
L − μe

) 1
2

, (28)

where L is the dynamic range of the tone mapped image.
Here, the high luminance is further compressed by a

factor of Xs . This inevitably causes detail loss in high
luminance areas. Nevertheless, our goal here is to roughly
estimate μe and σe that are relevant to a natural appearance of
the tone mapped image. As for the detail loss, it can typically
be well captured by the structural fidelity term. This estimation
of initial luminance level of the LDR image is closely related
to previous works [3], [27], [28].

μe and σe are only rough estimates of the desired
μ and σ values. For each LDR image, there should be
certain ranges of μ and σ values surrounding μe and σe,
within which the naturalness of the image is not degraded.
To verify this and to provide a quantitative model, we con-
ducted a subjective experiment, in which observers were
asked to gradually decrease and then increase μ of the test
LDR images until they saw significant degradation in natu-
ralness. A lower bound μl and a upper bound μr for each
LDR image were thus recorded. The same procedure is used
to obtain a lower std bound σl and a upper std bound σr for
each LDR image. We selected 60 natural LDR images from
the LIVE database [29] with different μ and σ values that
cover diverse natural contents. A total of 25 naive observers,
including 15 males and 10 females aged between 22 and 30,
participated in the experiment. The four bounds for each LDR
image are averaged over all 25 observers. Fig. 2 summarizes
the experimental results, where we observe that the relation-
ships between μ and the values of μl and μr are approximately
linear. This motivates us to fit two linear models to predict
μl and μr on the basis of μ. The fitted models have slopes
k1 = 0.60, k2 = 0.70 and intercepts b1 = −0.14, b2 = 83.61
for μl and μr , respectively. The R2 statistics of the two linear
models are 0.8008 and 0.8465 respectively, which indicate that
the linear models explain most variances in the subjective data.
Perhaps the most interesting finding in this experiment is when
μ of an image is relatively small, μr − μ is much large than
μ − μl . By contrast, the situation is reversed when μ of an
image is large. In words, the acceptable luminance changes
without significantly tampering an image’s visual naturalness
saturate at both small and large luminance levels. Similarly,
σl and σr of a test LDR image can also be fitted by two linear
models using σ as the predictor. The fitted lines for σl and σr

have slopes k3 = 0.65, k4 = 0.94 and intercepts b3 = −0.08,
b4 = 51.40, respectively.

Based on the method described above, given an HDR image,
we first estimate μe and σe and then predict μl , μr , σl and σr

of the tone mapped image. The μ and σ values of a natural
looking tone mapped image should at least fall in [μl, μr ] and
[σl , σr ], and if possible, close to μe and σe. We quantify the
drop from μe and σe to their lower and upper bounds using
Gaussian cumulative distribution functions (CDF). Specifi-
cally, the likelihood of a tone mapped image to be natural
given its mean μ is computed by

Pm =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1√
2πθ1

∫ μ

−∞
exp

[
− (t − τ1)

2

2θ2
1

]
dt μ ≤ μe

1√
2πθ2

∫ 2μr −μ

−∞
exp

[
− (t − τ2)

2

2θ2
2

]
dt μ > μe,

(29)
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Fig. 2. Subjective experiment results on the naturalness of mean and std values. The asterisks in (a) and (b) represent the upper bounds, given by the average
subject, of the mean and std of test images, respectively. The corresponding dotted lines are lease square fitted lines. The circles in (a) and (b) represent the
lower bounds, given by the average subject, of the mean and std of test images, respectively. The corresponding dashed lines are lease square fitted lines. The
solid lines in two plots are reference lines that correspond to μe and σe , respectively.

Fig. 3. The surfaces of Pm and Pd in TMQI_II. (a) Pm (b) Pd . It suggests that the μ and σ of the natural looking tone mapped image should to close to
μe and σe , which correspond to the peaks along the diagonal lines. The models give heavy penalty when |μ − μe| or |σ − σe | is large.

where τ1 and θ1 are uniquely determined by two points
(μl , 0.01) and (μe, 1) on the Gaussian CDF curve. Corre-
spondingly, τ2 and θ2 are uniquely determined by two points
(μr , 0.01) and (μe, 1) on the Gaussian CDF curve. Similarly,
the likelihood of a tone mapped image to be natural given its
std σ is computed by

Pd =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1√
2πθ3

∫ σ

−∞
exp

[
− (t − τ3)

2

2θ2
3

]
dt σ ≤ σe

1√
2πθ4

∫ 2σr −σ

−∞
exp

[
− (t − τ4)

2

2θ2
4

]
dt σ > σe,

(30)

where τ3 and θ3 are uniquely determined by two points
(σl , 0.01) and (σe, 1) on the Gaussian CDF curve,
and τ4 and θ4 are uniquely determined by two points
(σr , 0.01) and (σe, 1) on the Gaussian CDF curve.

The surfaces of Pm and Pd are plotted in Fig. 3. It can be
observed that μ and σ of the tone mapped image of high
naturalness should be close to μe and σe, which correspond
to the peaks along the diagonal lines. The models give heavy
penalty when |μ − μe| or |σ − σe| is large.

Similar to Eq. (24), assuming the independence of image
luminance and contrast [22], we multiply these two quantities
and obtain the overall statistical naturalness model

N(X, Y) = Pm Pd . (31)

Since 0 ≤ Pm , Pd ≤ 1, N also lies in [0, 1]. The superiority of
the modified statistical naturalness term over that in TMQI is
verified by improved correlation with respect to subjective
evaluations as shown in Table I.

To continue with the iterative optimization procedure upon
structural fidelity update, we start with the intermediate
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TABLE I

PERFORMANCE EVALUATION OF THE STRUCTURAL FIDELITY AND STATISTICAL NATURALNESS TERMS IN TMQI AND TMQI-II ON THE DATABASE [19]

image Ŷk in Eq. (6) and improve the statistical naturalness to
achieve Yk+1 through a three-segment equipartition monotonic
piecewise linear function

yi
k+1 =

⎧
⎪⎨

⎪⎩

(3/L)a ŷi
k 0 ≤ ŷi

k ≤ L/3

(3/L)(b − a)ŷi
k + (2a − b) L/3 < ŷi

k ≤ 2L/3

(3/L)(L − b)ŷi
k + (3b − 2L) 2L/3 < ŷi

k ≤ L .

(32)

This is essentially a point-wise intensity transformation with
its parameters a and b (where 0 ≤ a ≤ b ≤ L) chosen so
that μ and σ of Yk+1 = {yi

k+1 for all i} better approximate
μe and σe of the desired tone mapped image.

To solve for a and b, we first estimate the mean and std
values of Yk+1 by

μe
k+1 = μ̂k + λm(μe − μ̂k)

σ e
k+1 = σ̂k + λd (σe − σ̂k), (33)

where μ̂k and σ̂k are the mean and std of Ŷk , respectively.
λm and λd are step sizes that control the updating speed.
Finding the parameters a and b is then converted to solving
the following constrained optimization problem

{a, b}opt = arg min
{a,b}

||μk+1 − μe
k+1||2 + η||σk+1 − σ e

k+1||2

subject to 0 ≤ a ≤ b ≤ L, (34)

where η adjusts the weights between the mean and std terms.
We adopt a standard gradient projection algorithm [30], [31]
with a maximum of 30 iterations to solve this problem.
Once the optimal values of a and b are obtained, they are
plugged into (32) to create the resulting image Yk+1, which
is subsequently fed into the (k + 1)-th iteration.

The structural fidelity update and statistical naturalness
update alternate until ||Yk+1 − Yk ||2 is smaller than a thresh-
old ε. Technically, a similar iterative algorithm works as well
if TMQI is chosen as the optimization metric. The only
difference lies in Eq. (33), where μe and σe are replaced
with two constants corresponding to the peaks of fixed
Pm and Pd models in TMQI. We have five free parameters

in the proposed algorithm. For fair comparison between
TMQI and TMQI-II, we use the same set of parameters in
all experiments, which are ε = 0.1, λ = 0.3, λm = λd = 0.03
and η = 1, respectively.

A by-product of the above derivation of the iterative
TMO algorithm is a renewed index, TMQI-II, given by

TMQI-II(X, Y) = a[S(X, Y)]α + (1 − a)[N(X, Y)]β, (35)

where both S and N measures have been improved upon those
in TMQI. A number of parameters are inherited from TMQI.
These include C1 = 0.01, C2 = 10 and the threshold of
the contrast visibility for tone mapped images τσ = 2.6303.
Throughout our study, we set the threshold of contrast vis-
ibility for HDR images τσ = 0.06 and k = 0.12. As for
the model parameters in TMQI-II, we set a = 0.5, α = 1
and β = 1, which emphasize the equal importance between
structural fidelity and statistical naturalness terms.

III. EXPERIMENTAL RESULTS

To fully demonstrate the potentials of the proposed iterative
algorithm, we select a wide range of HDR images, containing
both indoor and outdoor scenes, human and static objects,
as well as day and night views. The initial images for this
algorithm are also generated by many different TMOs, ranging
from simple ones such as Gamma mapping (γ = 2.2) and
log-normal mapping to state-of-the-art ones such as
Durand’s method [32], Mantiuk’s method [33],
Drago’s method [4] and Reinhard’s method [3]. The
last one is considered one of the best TMOs based on several
independent subjective tests [12], [19].

We first examine the roles of the structural fidelity and
statistical naturalness components separately. In Fig. 4, we
start with an initial “Desk” image created by Reinhard’s
TMO [3] and apply the proposed iterative algorithm but using
structural fidelity updates only. It can be observed that the
structural fidelity map is very effective at detecting the missing
structures (e.g., text in the book region, and fine textures on the
desk), and the proposed algorithm successfully recovers such
details after a sufficient number of iterations. The improvement
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Fig. 4. Tone mapped “Desk” images and their structural fidelity maps. (a) Initial image created by Reinhard’s algorithm [3]. (b)-(e) Images created using
iterative structural fidelity update only. (f)-(j) Corresponding structural fidelity maps of (a)-(e), where brighter indicates higher structural fidelity. All images
are cropped for better visualization. (a) initial image (b) after 10 iterations (c) after 50 iterations (d) after 100 iterations (e) after 200 iterations (f) initial
image, S = 0.689 (g) 10 iterations, S = 0.921 (h) 50 iterations, S = 0.954 (i) 100 iterations, S = 0.961 (j) 200 iterations, S = 0.966.

Fig. 5. Tone mapped “Cornell box” images. (a) Initial image created by Gamma mapping (γ = 2.2). (b)-(d) Images created using iterative statistical
naturalness update only. (a) initial image, N = 0.000. (b) 10 iterations, N = 0.0001. (c) 30 iterations, N = 0.0329. (d) 50 iterations, N = 0.8355.
(e) 100 iterations, N = 0.9962.

of structural detail is also well reflected by the structural
fidelity map, which eventually evolves to a nearly uniform
white image. In Fig. 5, the initial “Cornell box” image is
created by the Gamma mapping (γ = 2.2), and we apply the
proposed iterative algorithm but using statistical naturalness
updates only. With the iterations, the overall brightness and
contrast of the image are significantly improved, leading to a
more visually appealing and natural-looking image.

Table II lists the TMQI-II comparison between the initial
images and the corresponding converged images after apply-
ing the full version of the proposed iterative optimization
algorithm. It can be observed that the proposed algorithm
consistently converges to images with both high structural
fidelity and high statistical naturalness and thus produces
higher TMQI-II values even when the initial images are
created by the most competitive TMOs.

To validate the superiority of TMQI-II over TMQI as the
optimization goal in the proposed iterative algorithm, Fig. 6
shows the comparison of TMQI with TMQI-II optimization
results on the “Woman” image initialized by Gamma mapping,
which creates dark background with missing structures. Both
TMQI and TMQI-II optimized images recover the structures
of the background such as the white door, the yellow board

and the photo frame, and present a better overall brightness.
However, the TMQI optimized image suffers from heavy noise
in homogenous areas such as in the wall and on the floor. The
boosted noise artifact are likely due to the structural fidelity
term in TMQI, which treats all local areas in the HDR image as
contrast visible. In comparison, the TMQI-II optimized image
is much cleaner and sharper.

Fig. 7 shows the comparison of TMQI and TMQI-II
optimization results on the “Clock building” image. The initial
image created by log-normal mapping preservers most struc-
tures but looks unrealistic due to its blanched appearance. This
problem is largely alleviated in the TMQI-II optimized image,
where the overall brightness and contrast of the image are
significantly improved, leading to a more visually appealing
and natural-looking image. By contrast, the TMQI optimized
image suffers from excessive contrast between the lights and
the bricks on the wall. This problem is likely rooted in its
statistical naturalness term, which drags μ and σ of all tone
mapped images towards 116 and 65 regardless of their contents
and luminance levels [19]. This is inappropriate for a night
scene like “Clock building” which desires lower μe and σe

(In TMQI-II, μe = 101 and σe = 48). Moreover, annoying
noise appears in the sky region of the TMQI optimized image.
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TABLE II

TMQI-II COMPARISON BETWEEN INITIAL AND CONVERGED IMAGES

Fig. 6. Tone mapped “Woman” images. (a) Initial image created by Gamma mapping. (b) TMQI optimized image. (c) TMQI-II optimized image.

Fig. 8 shows the comparison of TMQI and TMQI-II
optimization results on the “Bristol bridge” image with ini-
tial image created by Reinhard’s method [3]. Although the
initial image of Fig. 8(a) has a seemingly reasonable visual
appearance, the fine details of the woods and the brick
textures of the tower are fuzzy or invisible. In Fig. 8(c), the
proposed iterative algorithm using TMQI-II recovers these fine

details and makes them much sharper. Moreover, the overall
appearance is softer and thus more pleasant. In Fig. 8(b), we
can see that the iterative algorithm using TMQI heavily boosts
noise in the sky and cloud regions, which leads to quality
degradation when compared with the initial image. This also
reveals the problem of TMQI in quality assessment of tone
mapped images.
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Fig. 7. Tone mapped “Clock building” images. (a) Initial image created by log-normal mapping. (b) TMQI optimized image. (c) TMQI-II optimized image.

Fig. 8. Tone mapped “Bristol bridge” images. (a) Initial image created by Reinhard’s method [3]. (b) TMQI optimized image. (c) TMQI-II optimized image.

Fig. 9. Tone mapped “Grove” images. (a) Initial image created by Drago’s method [4]. (b) TMQI optimized image. (c) TMQI-II optimized image.

Fig. 9 shows the comparison of TMQI with TMQI-II on
the “Grove” image with initial image created by Drago’s
method [4]. Again, in the TMQI-II optimized image of
Fig. 9(c), fine details such as leafs between the two big trees
and the tree barks are well recovered and sharpened. The
overall appearance is also more vivid. However, in Fig. 9(b),
the iterative algorithm using TMQI over stretches the global
contrast, which darkens the tree trunks and whitens the leafs
and the sky. This affects the naturalness of the initial image
and leads to quality degradation.

To further verify the effectiveness and consistency of the
proposed algorithm, we conducted another subjective exper-
iment. In particular, we select 15 HDR images that contain
various natural scenes shown in Fig. 10 and adopt Gamma
mapping, log-normal mapping and Reinhard’s method [3] to
tone-map them to 15×3 = 45 LDR images. We then use them
as initial images of the iterative algorithm and obtain 45 TMQI
optimized images and 45 TMQI-II optimized images, respec-
tively. Eventually, we obtain 15 sets of tone mapped
images, each of which contains 9 images. 24 naive subjects
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TABLE III

MEAN OPINION SCORES OF TONE MAPPED IMAGES

Fig. 10. HDR test images used in the subjective experiment. The images
shown here are TMQI-II optimized with initial images created by Reinhard’s
method [3].

(9 males and 15 females aged between 22 and 30) were asked
to give an integer score between 0 and 10 for the perceptual
quality of each tone mapped image, where 0 denotes the
worst quality and 10 the best. The final quality score for
each individual image is computed as the average of subjective
scores, named mean opinion score (MOS), from all subjects.
The results are listed in Table III, from which we have
several interesting observations. First, using TMQI-II as the
optimization goal, the proposed algorithm leads to consistently
perceptual gain for all three different types of initial images.
By contrast, the perceptual gain obtained by optimizing TMQI
is much less, when initial images are created by Gamma and
log-normal mapping. Indeed, the quality of TMQI optimized
images decreases when the initial images are created by
Reinhard’s method [3]. Second, the best quality image on
average is TMQI-II optimized with the initial image created
by Reinhard’s method [3]. Note that because the image space
is extremely complicated and the proposed algorithm can only
guarantee to find a local optimum; thus better initial images
often lead to better local optima, which correspondingly have
better perceptual quality.

We use a hypothesis testing approach (based on
t-statistics [34]) to evaluate the statistical significance of the

TABLE IV

STATISTICAL SIGNIFICANCE MATRIX BASED ON THE HYPOTHESIS

TESTING. “1” MEANS THAT THE ROW CATEGORY IS STATISTICALLY

BETTER THAN THE COLUMN CATEGORY. “0” MEANS THAT THE COLUMN

CATEGORY IS STATISTICALLY BETTER THAN THE ROW CATEGORY.

“-” MEANS THAT THE ROW AND COLUMN CATEGORIES ARE

STATISTICALLY INDISTINGUISHABLE. G: GAMMA MAPPING

INITIALIZED; L: LOG-NORMAL MAPPING INITIALIZED;

R: REINHARD’S METHOD [3] INITIALIZED; (I): TMQI

OPTIMIZED AND (II): TMQI-II OPTIMIZED

subjective experimental results. Specifically, we treat the MOS
values of each column in Table III as one category. The
null hypothesis is that the MOS values in one category
is statistically indistinguishable (with 95% confidence) from
those in another category. The test is carried out for all
possible combinations of pairs of categories, and the results are
summarised in Table IV, from which we can see that TMQI-II
optimized images have statistically significantly better
MOS values in all cases.

In summary, we believe that the proposed iterative optimiza-
tion procedure provides a strong test that not only verifies
the superiority of TMQI-II over TMQI in predicting the
perceptual quality of tone mapped images but also shows
that the robustness and usefulness of TMQI-II to guide the
optimization process with a variety of initial images.

Because of the complexity of the initial TMOs, TMQI-II,
and the dimension of the search space, analytical convergence
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Fig. 11. Structural fidelity as a function of iteration with initial “woods”
images created by different TMOs.

Fig. 12. Statistical naturalness as a function of iteration with initial “woods”
images created by different TMOs.

assessment of the proposed algorithm is difficult. Therefore,
we observe the convergence performance empirically.
Figs. 11 and 12 show the structural fidelity and statistical
naturalness measures as functions of iteration using different
initial images as the starting points. There are several useful
observations. First, both measures increase monotonically with
iterations. Second, the proposed algorithm converges in all
cases regardless of using simple or sophisticated TMO results
as initial images. Third, different initial images may result
in different converged images. From these observations, we
conclude that the proposed iterative algorithm is well behaved,
but the high-dimensional search space is complex and contains
many local optima, and the proposed algorithm may be trapped
in one of them.

The computation complexity of the proposed algorithm
increases linearly with the number of pixels in the image.
Our unoptimized MATLAB implementation takes around
4 seconds per iteration for a 341 × 512 image on a computer
with an Intel Quad-Core 2.67 GHz processor.

IV. CONCLUSION AND FUTURE WORKS

We propose a novel approach to design TMOs by navigating
in the space of images to find the optimal image in terms
of an improved TMQI or TMQI-II. TMQI-II overcomes the

limitations underlying the structural fidelity and statistical
naturalness components in TMQI and thus has better
correlation with subjective quality evaluation. Optimizing
TMQI-II is based on an iterative approach that alternates
between improving the structural fidelity preservation and
enhancing the statistical naturalness of the image. Numeri-
cal and subjective experimental results show that both steps
contribute significantly to the improvement of the overall
quality of the tone mapped image. The proposed algorithm
further verifies the superiority of TMQI-II over TMQI. Finally,
our experiments show that the proposed method is well
behaved, and effectively enhances image quality from a
wide variety of initial images, including those created from
state-of-the-art TMOs.

The current work opens the door to a new class of tone map-
ping approaches. Many topics are worth further investigations.
First, as is the case for any algorithm operating in complex
high-dimensional spaces, the current approach only finds local
optima. Deeper understanding of the search space is desirable
to better solve the optimization problem. Second, the current
implementation is computationally costly and requires a large
number of iterations to converge. Fast search algorithms are
necessary to accelerate the iterations. Third, objective quality
assessment of tone mapped images still has much space to
improve. In the future, better objective IQA models may be
incorporated into the proposed framework to create better
quality tone mapped images.
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[11] M. Čadík and P. Slavík, “The naturalness of reproduced high dynamic
range images,” in Proc. 9th Int. Conf. Inf. Vis., 2005, pp. 920–925.
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