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ABSTRACT
We propose a patch-wise approach for multi-exposure image
fusion (MEF). A key step in our approach is to decompose
each color image patch into three conceptually independent
components: signal strength, signal structure and mean inten-
sity. Upon processing the three components separately based
on patch strength and exposedness measures, we uniquely re-
construct a color image patch and place it back into the fused
image. Unlike most pixel-wise MEF methods in the literature,
the proposed algorithm does not require significant pre/post-
processing steps to improve visual quality or to reduce spatial
artifacts. Moreover, the novel patch decomposition allows us
to handle RGB color channels jointly and thus produces fused
images with more vivid color appearances. Extensive experi-
ments demonstrate the superiority of the proposed algorithm
both qualitatively and quantitatively.

Index Terms— Multi-exposure fusion, image enhance-
ment, perceptual image processing

1. INTRODUCTION

Natural scenes often contain luminance levels that span a very
high dynamic range (HDR), whose visual information may
not be fully captured by a normal camera with a fixed ex-
posure setting [1]. Multi-exposure image fusion (MEF) al-
leviates the problem by taking multiple images of the same
scene under different exposure levels and synthesizing a low
dynamic range (LDR) image from them. The resulting fused
image is expected to be more informative and perceptually
appealing than any of the input images. An example is given
in Fig. 1. Compared with the typical HDR imaging pipeline,
MEF bypasses the intermediate HDR construction step and
directly yields an LDR image for normal displays.

Since first introduced in 1984 [3], MEF has attracted con-
siderable interests from both academia and industry. Most ex-
isting MEF algorithms are pixel-wise methods that typically
take the form of

Y(i) =
K∑

k=1

Wk(i)Xk(i) , (1)

where K is the number of input images in the multi-exposure
source sequence, Wk(i) and Xk(i) indicate the weight and

(a) Source image sequence by courtesy of Erik Reinhard

(b) Song12 [2] (c) Proposed

Fig. 1. Demonstration of MEF.

intensity values at the i-th pixel in the k-th exposure image,
respectively; Y represents the fused image. A straightforward
extension of this approach in transform domain is to replace
Xk(i) with transform coefficients. The weight map Wk often
bears information regarding structure preservation and visual
importance of the k-th input image at a pixel level. With spe-
cific models to quantify this information, existing MEF algo-
rithms differ mainly in the computation of Wk. In 1994, Burt
and Kolczynski applied Laplacian pyramid decomposition [3]
to MEF, where Wk is computed from local coefficient en-
ergy and the correlation between pyramids [4]. Mertens et
al. [5] defined contrast, color saturation and well exposure
measures to compute Wk. The fusion is done in a multires-
olution fashion. Edge preserving filters such as bilateral fil-
ter [6], guided filter [7] and recursive filter [8] are applied
to retrieve edge information and/or refine Wk in [9], [10]
and [11] respectively. Song et al. [2] incorporated MEF into a
MAP framework by first estimating the initial image with the
maximum visual contrast and scene gradient, and then sup-
pressing reversals in image gradients. Another MAP based
approach embedded perceived local contrast and color satu-
ration [12]. Gu et al. [13] extracted pixel-level gradient in-
formation from the structure tensor and smoothed it to com-
pute Wk. A similar gradient-based MEF method is proposed
in [14]. By exploiting the gradient direction, the method is
able to handle dynamic scenes that have moving objects. A
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detail-enhanced MEF is proposed in [15] on the basis of [5].
A relevant work in [16] divided input images into several non-
overlapping patches and selected the ones with the highest
entropy as the winners. The blocking artifact is reduced by
adopting a pixel-wise blending function. A main drawback
of most pixel-wise MEF algorithms is that the weight map
Wk is often very noisy and may create a variety of artifacts
if directly applied to the fusion process. Thus, most of the al-
gorithms resort to certain ad-hoc remediation efforts either by
pre-processing Xk (such as histogram equalization [11]) or
post-processing Wk (such as smoothing [5, 13, 15] and edge
preserving filtering [9–11]).

Different from the widely used pixel-wise approach of
MEF in the literature, we work with image patches. Specifi-
cally, we first decompose a color image patch into three con-
ceptually independent components: signal strength, signal
structure and mean intensity, and determine each component
respectively based on patch strength and exposedness mea-
sures. Such a novel patch decomposition enables us to handle
RGB channels jointly so as to better make use of color infor-
mation. As a result, the fused image has a more vivid color
appearance. Another advantage of patch-wise approaches is
their resistance to noise. As a result, unlike many existing
approaches, the proposed method does not need significant
ad-hoc pre/post-processing steps to improve the perceived
quality or to suppress the spatial artifacts of fused images.
Experiments demonstrate that the proposed algorithm creates
compelling fused images both qualitatively and quantitative-
ly.

2. PATCH-WISE MULTI-EXPOSURE FUSION

Let {xk} = {xk|1 ≤ k ≤ K} be a set of color image patch-
es extracted from the same spatial location of the source se-
quence that contains K multi-exposure images. Here xk for
all k are column vectors of CN2 dimensions, where C is the
number of color channels in the input images and N is the
spatial size of a patch. Each entry of the vector is given by
one of the three intensity values in RGB channels of a pixel
in the patch. Given any color patch, we first decompose it into
three components: signal strength, signal structure and mean
intensity

xk = ‖xk − µxk
‖ · xk − µxk

‖xk − µxk
‖

+ µxk

= ‖x̃k‖ ·
x̃k

‖x̃k‖
+ µxk

= ck · sk + lk , (2)

where ‖ · ‖ denotes the l2 norm of a vector, µxk
is the mean

value of the patch, and x̃k = xk − µxk
denotes a mean-

removed patch. The scalar ck = ‖x̃k‖, the unit-length vector
sk = x̃k/‖x̃k‖ and the scalar lk = µxk

represent the sig-
nal strength, signal structure and mean intensity components

of xk, respectively. Any patch can be uniquely decomposed
by the three components and the processing is invertible. As
such, the problem of constructing a patch in the fused image
is converted to determining the three components separately
and then inverting the decomposition.

We first determine the signal strength component. The
visibility of the local patch structure largely depends on local
contrast, which is directly related to signal strength. On one
hand, the higher the contrast, the better the visibility. On the
other hand, too large contrast may lead to unrealistic appear-
ance of the local structure. Considering all input source image
patches as realistic capturing of the scene, the patch that has
the highest contrast among them would correspond to the best
visibility under the realisticity constraint. Therefore, the de-
sired signal strength of the fused image patch is determined
by the highest signal strength of all source image patches:

ĉ = max
{1≤k≤K}

ck = max
{1≤k≤K}

‖x̃k‖ . (3)

Different from signal strength, the structures of local im-
age patches are denoted by unit-length vectors sk for 1 ≤
k ≤ K, each of which points to a specific direction in the
vector space. The desired structure of the fused image patch
corresponds to another direction in the same vector space that
best represents the structures of all source image patches. A
simple implementation of this relationship is given by

s̄ =

∑K
k=1 S (x̃k) sk∑K
k=1 S (x̃k)

and ŝ =
s̄

‖s̄‖
, (4)

where S(·) is a weighting function that determines the con-
tribution of each source image patch in the structure of the
fused image patch. Intuitively, the contribution should in-
crease with the strength of the image patch. A straightfor-
ward approach that conforms with such intuition is to employ
a power weighting function given by

S(x̃k) = ‖x̃k‖p , (5)

where p ≥ 0 is an exponent parameter.
Due to the construction of xk, Eq. (3) and Eq. (4) inher-

ently take into account color contrast and structure. As an ex-
ample, for uniform patches, the ones that contain strong color
information are preferred to grayish ones, which usually re-
sults from under/over-exposure. By contrast, existing MEF
algorithms that treat RGB channels separately may not make
proper use of color information in a patch and often produce
unwanted luminance changes.

With regard to the mean intensity of the local patch, we
take a similar form of Eq. (4)

l̂ =

∑K
k=1 L (µk, lk) lk∑K
k=1 L (µk, lk)

, (6)

where L(·) is also a weighting function that takes the global
mean value µk of the color image Xk and the local mean
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value of the current patch xk as inputs. L(·) quantifies the
well exposedness of xk in Xk so that large penalty is given
when Xk and/or xk are under/over-exposed. We adopt a two
dimensional Gaussian profile to specify this measure

L (µk, lk) = exp

(
− (µk − 0.5)2

2σ2
g

− (lk − 0.5)2

2σ2
l

)
, (7)

where σg and σl control the spreads of the profile along µk

and lk dimensions, respectively.1

Once ĉ, ŝ and l̂ are computed, they uniquely define a new
vector

x̂ = ĉ · ŝ + l̂ . (8)

We extract patches from the source sequence using a mov-
ing window with a fixed stride D. The pixels in overlapping
patches are averaged to produce the final output.

Throughout the paper, we set the patch size N = 11, the
stride of moving window D =

⌊
N
5

⌋
, the exponent param-

eter p = 4, two spreads of Gaussian profile σg = 0.2 and
σl = 0.5. Empirically, we find that the proposed algorithm is
robust to variations ofN and p, and a smaller value of σg rela-
tive to σl is important to produce more perceptually appealing
results. The proposed method can be applied to grayscale im-
ages simply by setting C = 1.

3. EXPERIMENTAL RESULTS

We test the proposed method on a variety of static natural
scenes with different numbers of exposure levels against eight
existing MEF algorithms. For fair comparison, the same set
of parameter values is used to produce all fused images as de-
scribed previously. Due to space limit, only partial results are
shown here. Nevertheless, the proposed algorithm is demon-
strated to produce perceptually appealing results for all test
sequences both qualitatively and quantitatively.

Fig. 1 shows the fused images produced by Song12 [2]
and the proposed method on the “Balloons” sequence. We
observe that the proposed method produces a more natural
and vivid color appearance on the sky and the meadow re-
gions. Moreover, it does a better job on structure preservation
around the sun area. On the contrary, the fused image pro-
duced by Song12 [2] suffers from color distortions and detail
loss. Besides, this pixel-wise method does not explicitly re-
fine its weight map, and thus a noisy fused image may be
produced on other sequences which are not shown here.

In Fig. 2, we compare Mertens09 [5] with the proposed
method on the “Tower” sequence. The former algorithm per-
forms the best on average in a recent subjective user study
among eight MEF algorithms [17]. Compared with Merten-
s09 [5], we can clearly observe several perceptual gains on
the fused image produced by the proposed method. For ex-
ample, the structures of the tower at the top and the brightest

1Input multi-exposure images are normalized to [0,1].

(a) Mertens09 [5] (b) Proposed

Fig. 2. Comparison of the proposed method with Merten-
s09 [5]. Source sequence by courtesy of Jacques Joffre.

cloud area are much better preserved. Also, the color appear-
ance of the sky and the meadow regions is more natural and
consistent with the source sequence.

(a) Shutao12 [11] (b) Proposed

Fig. 3. Comparison of the proposed method with
Shutao12 [11]. Source sequence by courtesy of Tom Mertens.

Fig. 3 compares Shutao12 [11] with the proposed method
on the “House” sequence. Shutao12 [11] treats RGB channels
separately, making it difficult to properly make use of color
information. As a result, the color in the uniform areas such
as the walls and window frames, appears dreary. The global
luminance of the fused image also changes drastically, where
the left part of the image is clearly brighter than the right part.
By contrast, the proposed method better preserves the color
information and the overall appearance of the fused image is
more appealing.

The comparison results between Li12 [15] and the pro-
posed method on the “Belgium House” sequence is exem-
plified in Fig. 4. Li12 [15] is a detail-enhanced version of
Mertens09 [5]. Detail enhancement does not necessarily re-
sult in perceptual gains especially when it neglects the realis-
ticity constraint of camera acquisition. As a result, the fused
image produced by Li12 [15] looks unnatural around edges,
for example near the branches and window frames. The pro-
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Table 1. Performance comparison of the proposed method with existing MEF algorithms using the objective IQA model
in [18]. The quality value ranges from 0 to 1 with a higher value indicating better perceptual quality. globalEng stands for a
naı̈ve method that linearly combines the input images using global energy as weighting factors.

Source sequence [13] [15] [10] [9] [11] [2] globalEng [5] Proposed
Balloons 0.913 0.941 0.948 0.768 0.944 0.883 0.862 0.969 0.963

Cave 0.934 0.923 0.978 0.694 0.961 0.822 0.837 0.974 0.980
Chinese garden 0.927 0.951 0.984 0.911 0.982 0.878 0.928 0.989 0.988

Farmhouse 0.932 0.958 0.985 0.877 0.977 0.756 0.916 0.981 0.983
Lamp 0.871 0.933 0.934 0.864 0.937 0.817 0.887 0.948 0.945

Landscape 0.941 0.948 0.942 0.954 0.972 0.937 0.962 0.976 0.991
Madison Capitol 0.864 0.949 0.968 0.763 0.918 0.702 0.886 0.977 0.974

Office 0.900 0.954 0.967 0.907 0.972 0.919 0.955 0.984 0.986
Tower 0.931 0.950 0.986 0.895 0.984 0.178 0.912 0.986 0.981
Venice 0.889 0.937 0.954 0.892 0.952 0.845 0.913 0.966 0.978

Average 0.910 0.944 0.965 0.852 0.960 0.774 0.906 0.975 0.977

(a) Li12 [15] (b) Proposed

Fig. 4. Comparison of the proposed method with Li12 [15].
Source sequence by courtesy of Dani Lischinski.

posed method produces the fused image with a more realistic
appearance and little detail loss.

In order to evaluate the performance of MEF algorithms
objectively, we adopt a recently proposed image quality as-
sessment (IQA) model that well correlates with subjective
judgements [18]. Although a number of IQA models for gen-
eral image fusion have also been proposed [19–27], none of
them makes adequate quality predictions of subjective opin-
ions as reported in [17]. The details of these models can be
found in an excellent review paper [28]. The model in [18] is
based on the multi-scale structural similarity (SSIM) frame-
work [29,30]. It keeps a good balance between local structure
preservation and global luminance consistency. The quali-
ty value of the IQA model ranges from 0 to 1 with a high-
er value indicating better quality. The comparison results of
the proposed method with eight existing MEF algorithms on
ten source sequences are listed in Table 1, from which we
observe that the proposed method produces comparable re-
sults with Mertens09 [5] in terms of the IQA model in [18],
whose quality values are considerably higher than those of
other MEF algorithms. Note that the model in [18] works
with luminance component only and may underestimate the
quality gain of the proposed method, for which producing a

natural and vivid color appearance is one of the main advan-
tages.

The computational complexity of the proposed method in-
creases linearly with the number of pixels in the source se-
quence. Our unoptimized MATLAB code takes around 2.9
seconds to process a source sequence of size 341× 512× 3.

4. CONCLUSION AND FUTURE WORK

MEF is a handy and practical image enhancement framework
that is widely adopted in consumer electronics. Most exist-
ing MEF algorithms are pixel-wise methods, which often suf-
fer from noisy weight maps. As a result, ad-hoc pre/post-
processing steps are often involved in order to produce rea-
sonable results. By contrast, the proposed method works with
color image patches directly by decomposing them into three
conceptually independent components and determining each
component respectively based on patch strength and exposed-
ness measures. Experiments demonstrate that the proposed
method produces compelling fused images both visually and
in terms of a recently proposed objective quality model [18].

The novel patch decomposition underlying the proposed
method renders it highly flexible to include new features.
First, by incorporating the direction of structure vector sk
into the construction of the weighting function S(·), we may
be able to account for dynamic scenes. Second, by replacing
l̂ in the current computation with local patch mean values of
some already fused images, the algorithm is transformed to a
detail enhancement algorithm. The problem now is to find the
best candidate fused image that combines with the proposed
method to produce the best quality image. These issues will
be investigated in our future work.
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