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ABSTRACT

Images captured in outdoor scenes often suffer from poor visibility
and color shift due to the presence of haze. Although many algo-
rithms have been proposed to remove the haze, not much effort has
been made on quality assessment of dehazed images. In this paper,
we first build a database that contains 25 hazy images as well as
dehazed images created by eight dehazing algorithms. A subjective
user study is then carried out based on the database, from which we
have several useful findings. First, considerable agreement between
human subjects on the perceived quality of hazy and dehazed images
is observed. Second, not a single dehazing algorithm performs the
best for all test images. Third, existing objective image quality as-
sessment (IQA) models are very limited in providing proper quality
predictions of dehazed images.

Index Terms— Image dehazing, subjective image quality as-
sessment, image enhancement, perceptual image processing

1. INTRODUCTION

Images captured in outdoor scenes often suffer from poor visibility
and color shift due to the presence of haze1. Dehazing, also referred
to as haze removal, is highly desirable for both computational pho-
tography and computer vision tasks. The resulting dehazed image
is expected to be more perceptually appealing in general. Moreover,
many computer vision algorithms can only work well with the scene
radiance that is haze-free.

In 1924, Koschmieder [1] proposed a hazy image formation
model that is widely adopted later on

I(x) = J(x)t(x) +A(1− t(x)) , (1)

where I is the observed hazy image, J is the underlying scene radi-
ance, A is the atmospheric light, t ∈ [0, 1] is the media transmission
coefficient and x denotes pixel coordinates. The light reflected by
the object to the camera is first attenuated through transmission (first
term) and then blent with the atmospheric light (second term). As-
suming validity of this model, the goal of haze removal is to recover
J with no additional information about A and t. Apparently, this is
an ill-posed problem with 3 constraints but 7 unknowns for an RGB
color image. Previously, many algorithms have been proposed with
the aid of additional information such as multiple images taken under
different weather conditions [2, 3] or different degrees of polariza-
tion [4, 5], and depth information from either the user inputs [6] or
given 3D models [7].

Only recently has single image dehazing become an active re-
search topic. Most single image dehazing algorithms adopt the

1In this paper, we do not differentiate the phenomena similar to haze (e.g.,
dust, mist and fume) and use “haze” as a common term for simplicity.

aforementioned physical model and differ mainly in the method-
ologies to estimate the transmission t. Fattal [8] estimated t by
assuming that the surface albedo is locally uncorrelated with the
transmission. Tan [9] recovered the scene radiance by maximizing
local contrast with a smooth constraint on t. Inspired by the dark
object subtraction technique [10], a dark channel prior is proposed
to estimate t in [11], which is highly effective in detecting the thick-
ness of the haze. When recovering the scene radiance, it needs to be
combined with soft matting [12] or a guided filter [13], followed by
an exposure increase procedure to obtain reasonable results. Tarel
et al. [14] proposed a fast haze removal algorithm based on median
filter. Using guided joint bilateral filter [15, 16], Xiao and Gan [17]
refined t in [14] to better represent depth edge information. With
real time filter implementation [18], the complexity of the algorithm
grows linearly with the number of pixels. Kim et al. [19] estimated t
by maximizing block-wise contrast and meanwhile minimizing the
information loss due to pixel truncation. The transmission is then
refined using a guided filter [13] as well. By adding a temporal co-
herence measure, they extended the algorithm to account for video
dehazing. Meng et al. [20] further proposed a boundary constraint
on t. Combined with a weighted L1 norm, the induced optimization
problem has a closed form solution in each iteration using a clever
trick of variable splitting. Fattal [21] estimated a coarse t using a
local color-lines model [22] and refined it in a Gaussian Markov ran-
dom field. Tang et al. [23] investigated several haze-revelent features
using Random Forest [24] for image dehazing. Assuming the inde-
pendence of image content and scene depth, they synthesized a hazy
image patch with a random transmission t; the input and output of
Random Forest are extracted features and t of a given patch, respec-
tively. Noticing that all images captured in natural scenes contain
some noise due to sensor error, Matlin and Milanfar [25] adopted an
iterative kernel regression method [26] to denoise and dehaze a hazy
image simultaneously. Another approach that handles denoising and
dehazing problems jointly using a variational approach is proposed
in [27]. A multiresolution fusion scheme is adopted in [28], which
does not depend on the physical model in [1].

With multiple dehazing algorithms available, it becomes pivotal
to compare their dehazing performance so as to find further direc-
tions for advancement. Surprisingly, not much work has been done
in this aspect. To the best of our knowledge, the only subjective test
reported in the literature was done by Chen et al. [29] on a database
of limited dehazing algorithms proposed before 2010. A comprehen-
sive study that compares a variety of both classical and state-of-the-
art dehazing algorithms has not been reported in the literature. On
the other hand, objective quality assessment of dehazing algorithms
is a challenging problem since a perfect quality dehazed image is not
available as a reference. General purpose no-reference IQA model-
s [30, 31, 32, 33, 34] and no-reference models for contrast-distorted
images [35] may be applicable but are never tested on dehazed im-
ages. Only a few models have been designed specifically for dehazed
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Fig. 1. Hazy images in the database.

images. In [36], the authors proposed three measures based on re-
covered visible edges and saturated pixels to account for the quality
of a dehazed image. More recently, Chen et al. [29] exploited rank
SVM to learn a quality predictor using GIST [37] and color motion
features [38].

In this paper, we first build a database that contains a variety
of hazy images and their corresponding dehazed images created by
eight dehazing algorithms. We then conduct a subjective user study
from which we have several useful observations. First, considerable
agreement between human subjects on the perceived quality of hazy
and dehazed images is observed. Second, not a single dehazing algo-
rithm performs the best for all test images. Third, existing objective
IQA models are very limited in predicting the quality of dehazed
images.

2. SUBJECTIVE QUALITY ASSESSMENT

2.1. Image Database

We select 25 hazy images to cover diverse outdoor scenes and dif-
ferent degrees of haze thickness. These include humans, animals,
plants, architectures, landscapes, statics, traffics and night scenes, as
shown in Fig. 1. Some images are frequently used in the literature
of image dehazing. Most of the images were captured in the real-
world, but the haze of the three indoor static objects are simulated
homogenously.

Eight dehazing algorithms are selected to cover a variety of
dehazing methodologies and behaviors. These include simple op-
erator 1) Photoshop auto-contrast [39] and advanced algorithm-
s 2) He09 [11], 3) Kim13 [19], 4) Kolor Neutralhazer [40], 5)
Meng13 [20], 6) Tang14 [23], 7) Tarel09 [14] and 8) Xiao12 [17].
The dehazing results of Kim13 [19] and Meng13 [20] are gener-
ated by the authors. In other cases, default parameter settings are
adopted without tuning for better quality. Eventually, we have a
total of 225 images (25 hazy ones and 200 dehazed ones) and divide
them into 25 image sets with 9 images each. The images from the
same set are from the same source image content, as exemplified in
Fig. 2, where we observe that different dehazed images have sub-
stantially different perceptual appearance. Interestingly, the quality
of some dehazed images are even worse than the hazy one at the first
glance. This motivates us to conduct a comprehensive subjective
user study to evaluate the performance of those dehazing algorithms
quantitatively.

(a) Hazy image (b) He09 [11] (c) Kim13 [19]

(d) Kolor [40] (e) Meng [20] (f) Photoshop [39]

(g) Tang14 [23] (h) Tarel09 [14] (i) Xiao12 [17]

Fig. 2. Sample hazy and dehazed images from one image set.

2.2. Subjective User Study

The subjective user study is conducted at the University of Waterloo
in the Image and Vision Computing (IVC) laboratory, which has a
normal lighting condition without reflecting ceiling walls and floor.
A Truecolor (32 bits) LCD monitor resolution of 2560× 1600 pixel
is used to display all images. The monitor is calibrated in accordance
with the recommendations of ITU-R BT.500 [41]. A customized
MATLAB figure window is built to render all 9 images to the sub-
ject simultaneously at their original pixel resolution but in random
spatial order. A total of 24 naive observers, including 12 male and
12 female subjects aged between 22 and 28, participated in the sub-
jective experiment. The subjects are allowed to adjust their positions
for better observation. The length of a session is limited to a max-
imum of 30 minutes in order to minimize the influence of fatigue
effect.

The subjects scored each image with an integer from 1 to 10 that
best reflects its perceptual quality. 1 denotes the worst quality and 10
the best. The instructors neither provided the subjects backgrounds
of this study nor instructed them with other sample images. In oth-
er words, the subjects gave opinions completely based on their own
prior knowledge and preference. The reasons to adopt this testing
strategy are as follows [42]. First, it is highly efficient since multiple
scores are collected at one shot. Second, it reduces memory effect
because a full set of images are evaluated at the same time, mak-
ing it easier for the subjects to apply the same scoring strategy to
all images. Third, because the absolute category ratings being col-
lected also inherently contain ranking information, both linear and
rank-order correlation evaluations can be directly applied in the data
analysis stage. Finally, quality comparison across source images of
different content is meaningful in the development of objective IQA
models to test and improve their generalization capabilities.

3. ANALYSIS AND DISCUSSION

3.1. Subjective Data Analysis

Based on the outlier detection and removal scheme in [41], we find
that all 24 subjects are valid. The final quality score, namely the
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Table 1. PLCC and SRCC evaluations between the subjective scores
of individual observers and MOSs across the database

Subject PLCC SRCC Subject PLCC SRCC

1 0.6239 0.5871 14 0.6349 0.6340
2 0.7578 0.7342 15 0.6673 0.6570
3 0.8301 0.8273 16 0.6975 0.6739
4 0.6502 0.6147 17 0.6698 0.6571
5 0.5537 0.5293 18 0.6538 0.6182
6 0.6626 0.6332 19 0.5148 0.4706
7 0.7137 0.7189 20 0.6210 0.6258
8 0.5657 0.5570 21 0.6047 0.5868
9 0.7824 0.7793 22 0.7264 0.7107
10 0.6569 0.6661 23 0.5820 0.5351
11 0.6535 0.6424 24 0.7345 0.7339
12 0.6577 0.6615

Average 0.6620 0.6462
13 0.6733 0.6553

mean opinion score (MOS), is computed by averaging subjective s-
cores from all subjects. We can evaluate the performance of individ-
ual subjects against the MOSs (the “ground truth”) in the following
two ways: 1) compare their scores with the MOSs for all test im-
ages, where data across different content are analyzed together; 2)
compute the correlation for each image set and then take the aver-
age. We employ Pearson linear correlation coefficient (PLCC) and
Spearman’s rand-order correlation coefficient (SRCC) [43] as evalu-
ation criteria. Both criteria lie in [0, 1] with a higher value standing
for better performance. Table 1 lists the PLCC and SRCC values for
all subjects across the database, from which considerable agreement
on the quality of hazy and dehazed images can be observed. We al-
so compute PLCC and SRCC values of individual subjects for each
image set. By averaging the results of all 24 subjects, we obtain the
general performance of an average observer, which can be served as
a baseline to test objective IQA models. The statistics are summa-
rized in Fig. 3, where the performance of an average subject is given
at the rightmost column.

3.2. Performance of Dehazing Algorithms

As described in Section 3.1, the MOS of a dehazed image created by
a certain dehazing algorithm is a good indicator of its performance.
Therefore, we compute the mean and standard deviation (std) of the
MOSs for each algorithm as well as the hazy image across all image
sets, as shown in Fig. 4. Furthermore, we test a hypothesis based on
t-statistics [44] to evaluate the statistical significance of the subjec-
tive experimental results. The null hypothesis is that the MOSs of
one dehazing algorithm is statistically indistinguishable (with 95%
confidence) from those of another algorithm. The test is carried out
for all possible combinations of pairs of algorithms (including hazy
image set), and the results are summarised in Table 2. Note that this
is only a rough comparison of the dehazing performance of those
algorithms. Many algorithms work in their default parameter set-
tings without fine tuning. Besides, computational complexity is not
considered in this study.

From Fig 4 and Table 2, we have several useful and somewhat
surprising observations. First, all dehazing algorithms have a rela-
tively large error bar, which indicates the performance gain is not
reliable for all the algorithms. In fact, not a single algorithm cre-
ates the best dehazing results for all test images. Second, the com-

Fig. 3. PLCC and SRCC values of each individual subject ratings
against MOSs. Rightmost column: average subject performance.

mercialized software Kolor Neutralhazer [40] performs the best on
average, although it is statistically indistinguishable from the naive
Photoshop auto-contrast method [39]. Generally, Kolor Neutralhaz-
er [40] keeps a good balance between the degree of haze removal
and structure recovery, and thus looks more natural with less arti-
facts and haze compared with other dehazed images as well as the
hazy images. Third, the quality of the dehazed images by some al-
gorithms such as He09 [11] and Meng13 [20] are statistically indis-
tinguishable from the hazy images. This is mainly because a variety
of distortions are introduced during the extensive haze removal pro-
cess. For example, in distant areas with heavy haze, the underlying
structures may not be captured by the camera; instead the sensor
noise of those areas can easily be amplified after haze removal. For
another example, some hazy images may be JPEG compressed im-
mediately after being acquired. This may not cause visual degrada-
tion in hazy images, but the blocking artifacts become clearly visible
after haze removal because they are mistakenly considered as under-
lying structures by the dehazing algorithms. Other distortions that
seriously decrease the perceived quality of dehazed images include
halo artifacts in the background and near edges due to inaccuracy
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Table 2. Statistical significance matrix based on the hypothesis testing. A symbol “1” means that the performance of the row algorithm is
statistically better than that of the column algorithm, a symbol “0” means that the row algorithm is statistically worse, and a symbol “-” means
that the row and column algorithms are statistically indistinguishable.

Hazy He09 [11] Kim13 [19] Kolor [40] Meng13 [20] PS [39] Tang14 [23] Tarel09 [14] Xiao12 [17]

Hazy - - 0 0 - 0 - 1 0
He09 [11] - - 0 0 0 0 0 1 0

Kim13 [19] 1 1 - - 1 - 1 1 -
Kolor [40] 1 1 - - 1 - 1 1 1

Meng13 [20] - 1 0 0 - 0 - 1 0
PS [39] 1 1 - - 1 - 1 1 -

Tang14 [23] - 1 0 0 - 0 - 1 0
Tarel09 [14] 0 0 0 0 0 0 0 - 0
Xiao12 [17] 1 1 - 0 1 - 1 1 -

0

1

2

3

4

5

6

7

8

Tarel09
He09

Hazy
Meng13

Tang14
Xiao12

Photoshop
Kim13

Kolor

M
O

S

Fig. 4. Mean and std of subjective ratings of dehazing algorithms
along with the hazy image across all image sets.

of transmission estimation, artificial edges, color saturation due to
over-contrast enhancement, and unnatural appearance due to color
distortion or overall dark luminance. These distortions may counter-
act the effort of haze removal and cause new problems in subsequent
computer vision tasks. In summary, single image dehazing is a very
challenge problem and still has much room for further improvement.
For example, most physical model based dehazing algorithms put a
lot of effort on the evaluation of the transmission coefficient t in E-
q. (1), but simply estimate the atmospheric light A using somewhat
ad hoc methods. It turns out that the selection of A is critical in im-
proving the perceptual quality of dehazed images [20, 23] and needs
to be seriously investigated.

3.3. Performance of Existing Objective IQA Models

We test five general purpose no-reference objective IQA models [30,
31, 32, 33, 34], one no-reference model for contrast-distorted im-
ages [35] and one model [36] specific for dehazing images. The
results are tabulated in Table 3. As we can see, none of the IQA
models properly predicts the perceived quality of dehazed images.
This is mainly because most existing no-reference IQA models are
designed to work with typical distortions such as luminance, blur and
blocking artifacts, and do not have the generalization capabilities to

Table 3. Performance evaluation of objective IQA models

IQA model PLCC SRCC

BIQI [30] 0.1688 0.1557
BRISQUE [31] 0.1749 0.1674

NIQE [32] 0.2051 0.1732
DILT [34] 0.0304 -0.0353

BLINDS-II [33] 0.0604 -0.0204
NCDQI [35] 0.2748 0.2765

Hautière e [36] -0.1442 -0.0876
Hautière r [36] -0.0405 -0.0301

Hautière Ns [36] -0.0478 -0.2416

account for many distortions introduced during the dehazing process
discussed previously. The model in [36] only focuses on the recov-
ered structures and saturated pixels while ignoring the naturalness of
the dehazed images. This may not be appropriate since the recov-
ered structures may be created from amplified background noise and
blocking artifacts. In summary, our study suggests that natural scene
statistics as well as distortion specific features may be combined to
yield a more accurate objective IQA model in the future.

4. CONCLUSIONS AND DISCUSSION

Single image dehazing has been an active research topic recently,
but little work has been dedicated to subjective and objective quality
assessment of dehazed images. We make one of the first attempts
to evaluate both classic and advanced dehazing algorithms, as well
as related IQA models. A new image database is established and
subjective tests are conducted. Data analysis shows that not a single
dehazing algorithm is reliable enough to create high quality dehaz-
ing results for all test images. The quality of dehazed images gen-
erated by some state-of-the-art dehazing algorithms are statistically
equivalent to the hazy images. Our study also shows that none of the
existing objective IQA models gives proper quality predictions of
dehazed images. Careful observations suggest that future dehazing
algorithms need to keep a balance between the natural appearance
and the degree of haze removal in a dehazed image. Furthermore,
objective IQA models that incorporate natural scene statistics and
distortion specific features may have the potential to better predict
the perceived quality of dehazed images.
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trast und Sichtweite. Beiträge zur Physik der freien Atmo-
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