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Abstract Reversible data hiding has extensive applications in fields like data au-
thentication, medical data management and error concealment. In this paper, we
formulate the model of reversible data hiding over a special ternary cover that is
suitable for any transform domain, such as DCT domain, where the probability
density function of the transformed coefficients has a Laplacian distribution with a
small variance. After deriving rate-distortion function for this model, we propose
a code construction that can approach the rate-distortion bound. Based on the
code construction, a reversible data hiding method for JPEG images is proposed.
Experimental results demonstrate that proposed method has a good balance among
image quality, filesize increment and computation time. The excellent performance
of proposed method also demonstrate the power of our code construction for
reversible data hiding on DCT based media.
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1 Introduction

As a technique that embeds secret message into cover signal, information hiding has
been widely applied in areas such as covert communication, copyright protection
and media annotation [19]. Reversible data hiding (RDH) is one kind of information
hiding technique with the characteristic that not only the secret message needs to
be precisely extracted, but also the cover itself should be losslessly restored. This
property is important in some special scenarios such as medical imagery, military
imagery. In these applications, the cover is too precious or too important to be
damaged [6].

Since first introduced in a Kodak’s patent [9], a plenty of reversible data hiding
algorithms have been proposed in the past decade. In a technical review [2], Caldelli
et al. introduced some most typical RDH algorithms. Classical RDH algorithms
roughly fall into three categories. The first kind of algorithms follow the idea of
compression-embedding framework, which was first introduced by Fridrich [8]: in
these algorithms, the image is segmented into pixel groups and a binary feature
value is calculated for each pixel group. These binary feature values form a com-
pressible sequence and message can be embedded in the extra space left by lossless
compression. Celik made an extension of this work in [3]. The second category is
based on difference expansion (DE) [10, 20, 21], in which the difference of a pair of
neighboring pixels is expanded, e.g., multiplied by 2, and thus the least significant bits
(LSBs) of the differences are all-zero and can be used for embedding message. The
last kind of RDH algorithms are based on histogram shift (HS) [17]. The histogram
of one special feature (for example, grayscale value) for natural image is quite
uneven, which implies that the histogram can be compressed for embedding data. For
instance, some space can be saved for watermark by shifting the bins of histogram.
In fact, better performance can be achieved by applying DE or HS to residual part
of images, e.g., the predicted errors [16, 22]. Recently, researchers are interested in
adaptive RDH methods, which choose the cover image’s flat area to embed message
and avoid area with much detail, or to embed more bits into flat area and less bits
into complex area[14, 18]. Doing like these is for the sake of minimizing the overall
distortion under a given payload.

Though many algorithms have been proposed in the past decade, few theoretical
analysis about reversible data hiding have been published yet. Kalker and Willems
[12] have made a fundamental contribution for this kind of work. In their paper, they
established the framework of reversible data hiding as a rate-distortion problem, and
in the case of binary cover, they deduced explicit expression for the rate-distortion
bound. They also proposed a recursive code construction for RDH in binary covers,
but their method can not approach the bound.

In our previous work [26], we proposed capacity-approaching codes for reversible
data hiding in binary covers. These codes are proved to be quite effective in
preserving stego image’s visual quality. Whenever a grayscale RDH problem can be
converted to a binary cover model, the codes can be adopted to reduce embedding
distortion and to improve stego image’s visual quality. In our extended paper [27],
the codes are adopted to improve Fridrich’s RDH method for JPEG images [7],
but both in [7] and in [27] the maximum achievable payload is disappointingly
small.
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So far, there are only a few RDH methods proposed for JPEG images, or more
generally, for DCT (Discrete Cosine Transform) domain cover. Since DCT is used
as a core component in mainstream media compression standards (JPEG for image
compression and H.264 for video compression), there are a spectrum of applications
of RDH in DCT domain.

In [25], Zhang et al. proposed a technique to authenticate the integrity of JPEG
image with the help of RDH. In his method, the JPEG image is divided into blocks,
and for each block the hashed DCT coefficients are embedded into other blocks,
which is used to identify whether one block has been tampered. Because the purpose
of this technique is to protect the integrity of images, it is required that the data
embedding operation should be harmless to the original image covers.

Recently, it has been found that reversible data hiding can also be quite helpful
in video error-concealment coding. Chung et al. [5] proposed an error resilient video
coding algorithm for H.264 videos, in which the motion vector of a block is embeded
into the DCT coefficients of a neighboring block. To avoid image quality degradation
caused by data embedding, they embed the data in a reversible way. It is shown in
the experiments that the visual quality of the original video is highly improved since
the use of RDH.

In [11], Hwang et al. suggested some mechanisms for secure cloud computing. For
example, the cloud server can embed some authentication information into the data,
claiming the data’s owner, uploading time, etc. However, the server is prohibited to
change the user’s data in any case, so RDH for DCT domain is suitable to manage
JPEG images or compressed videos. In another instance of media management
scenerio, Wong and Tanaka [23] combined reversible watermarking with image
scrambling. In their method, they embedded data into DC components of a JPEG
image and achieved image scrambling at the same time. The embedded data contains
basic information about the image to support media management, and the scrambling
process helps protect image’s content.

In this paper, we extend the idea in our previous work to a special ternary cover
model that fits DCT based media, like JPEG images and compressed videos. First
we deduce an explicit expression of rate-distortion bound for such cover, and then
propose a code construction that can approach the bound. Furthermore, we apply
the proposed coding scheme to RDH for JPEG images to improve the performance.

The rest of the paper is organized as follows. Section 2 establishes the model and
rate-distortion bound for RDH in ternary cover. An optimal code construction for
this model is elaborated in Section 3. Further, a case study is given that applies the
code construction to RDH for JPEG images in Section 4, and finally, we conclude
this paper with a discussion in Section 5.

2 A ternary-cover model for reversible data hiding

In this section, we will formulate the model of a special ternary cover, for which the
rate-distortion bound of RDH will be presented with a proof. We denote the entropy
by H(X). Specially, the binary entropy function is denoted by H2(p) for 0 ≤ p ≤ 1,
and the ternary entropy function is denoted by H3(p1, p2, p3) for 0 ≤ p1, p2, p3 ≤ 1
and p1 + p2 + p3 = 1.
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2.1 Model of RDH in a special ternary cover

Assume that the cover is a memoryless ternary sequence x = (x1, x2, · · · , xN), with
xi ∈ {−1, 0, 1} and the probability mass function (pmf) PX(0) = p0, PX(1) = p+,
PX(−1) = p−. We only consider the case that the percentages of 1 and -1 in x are
quite small, in fact, it is assumed that both p+ and p− are less than 1/3 in our
formulation, i.e., p+ ≤ 1/3 and p− ≤ 1/3. Without loss of generality, we assume that
p+ ≤ p−. (If p+ > p−, the conclusion is similar). One typical example of this cover
model is the quantized DCT coefficients with values equal to −1, 0 and 1 (see Fig. 7),
so RDH on this model can be applied to DCT compression based media, such as
JPEG images or compressed videos.

We’ll embed messages into x in a reversible manner. The secret message
m = (m1, m2, · · · , mL) is a binary random sequence with mi ∈ {0, 1}. m is embedded
into x and the corresponding stego is y = (y1, y2, · · · , yN). Denote the pmf of stego
by PY , and the transition pmf from cover to stego by PY|X . The embedding distortion
is measured by square error distortion, i.e., d(a, b) = (a − b)2. We further define
the embedding rate as ρ = L/N and the average embedding distortion as D =∑

x,y PX(x)PY|X(y|x)d(x, y).
It’s preferable to achieve both high embedding rate and low distortion, but in most

circumstances these two targets just conflict with each other. Thus, the question arises
that how to maximize the embedding rate under given distortion constraint? Thanks
to previous research [12], this rate-distortion problem can be solved with information
theory.

2.2 Rate-distortion curve

It has been proved by Kalker et al. [12] that, for any given distortion constraint �,
the reversible embedding capacity, i.e., the maximum embedding rate, is

ρ(�) = maxH(Y) − H(X), (1)

in which the maximum is over all test channel P(Y|X) s.t.

∑

x,y

PX(x)PY|X(y|x)d(x, y) ≤ �. (2)

Now from (1), we will derive the explicit expression of ρ(�) for the special ternary
cover model mentioned in Section 2.1.

Theorem 1 For a ternary memoryless source with p+ ≤ p− ≤ 1/3, the embedding
capacity for 0 ≤ � ≤ p0 − 1/3 is given by

ρ(�)

=
{

H3(p0 − �, p+ + �, p−) − H3(p0, p+, p−), if 0 ≤ � ≤ p− − p+
H2(p0 − �) − H3(p0, p+, p−) + 1 − p0 + �, if p− − p+ < � ≤ p0 − 1/3

(3)
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Proof Equation (1) implies that deriving the rate-distortion function is an optimiza-
tion problem, which maximizes

−
1∑

y=−1

(
1∑

x=−1

PX(x)PY|X(y|x)

)

log2

(
1∑

x=−1

PX(x)PY|X(y|x)

)

− H3 (p0, p+, p−) , (4)

s.t.:

D =
∑

x,y

PX(x)PY|X(y|x)d(x, y) = �, (5)

1∑

y=−1

PY|X(y|x) = 1, ∀x ∈ {−1, 0, 1}, (6)

PY|X(y|x) ≥ 0, ∀x, y ∈ {−1, 0, 1}. (7)

We can use the method of Lagrange multipliers to find the optimal solution by
setting up the functional

J = −
1∑

y=−1

(
1∑

x=−1

PX(x)PY|X(y|x)

)

log2

(
1∑

x=−1

PX(x)PY|X(y|x)

)

−H3 (p0, p+, p−) − λ
∑

x,y

PX(x)PY|X(y|x)d(x, y)

−
1∑

x=−1

ux

1∑

y=−1

PY|X(y|x) −
1∑

x=−1

1∑

y=−1

vx,y PY|X(y|x). (8)

Differentiating with respect to PY|X(y|x), we have

∂ J
∂ PY|X(y|x)

= − PX(x) log2

(
1∑

i=−1

PX(x)PY|X(y|i)
)

− PX(x) log2 e

− λPX(x)d(x, y) − ux − vx,y = 0, ∀x, y ∈ {−1, 0, 1}. (9)

Solving the series of (9) subject to constraints (5)–(7), we can get the optimal
conditional pmf P∗

Y|X and the optimal pmf P∗
Y , which are formulated as two cases.

��

Case 1 When log2

(
1

p− − 2
)

≤ λ ≤ log2

(
p0

p+

)
,

P∗
Y|X(y|x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0−2λ p+
(1+2λ)p0

, if (x, y) = (0, 1)

2λ(p0+p+)

(1+2λ)p0
, if (x, y) = (0, 0)

1, if (x, y) = (1, 1) or (−1,−1)

0, otherwise

(10)

P∗
Y(0) = 2λ(p+ + p0)

1 + 2λ
, P∗

Y(1) = (p+ + p0)

1 + 2λ
, P∗

Y(−1) = p−, (11)
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and

� = p0 − 2λ p+
1 + 2λ

. (12)

Case 2 When 0 ≤ λ < log2

(
1

p− − 2
)

,

P∗
Y|X(y|x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
(2+2λ)p0

− p+
p0

, if (x, y) = (0, 1)

1
(2+2λ)p0

− p−
p0

, if (x, y) = (0,−1)

1
p0

− 2
(2+2λ)p0

, if (x, y) = (0, 0)

1, if (x, y) = (1, 1) or (−1,−1)

0, otherwise

(13)

P∗
Y(0) = 2λ

2 + 2λ
, P∗

Y(1) = 1

2 + 2λ
, P∗

Y(−1) = 1

2 + 2λ
, (14)

� = 2

2 + 2λ
− p+ − p− . (15)

By (12) and (15), we can replace the parameter λ with �, and then rewrite the
optimal solutions as follows.

Case 1 When 0 ≤ � ≤ p− − p+,

P∗
Y|X(y|x) =

⎧
⎪⎪⎨

⎪⎪⎩

�
p0

, if (x, y) = (0, 1)

1 − �
p0

, if (x, y) = (0, 0)

1, if (x, y) = (1, 1) or (−1, −1)

0, otherwise

(16)

P∗
Y(0) = p0 − �, P∗

Y(1) = p+ + �, P∗
Y(−1) = p−. (17)

In this case, the rate-distortion function is given by

H3
(
P∗

Y(0), P∗
Y(1), P∗

Y(−1)
) − H3(p0, p+, p−)

= H3 (p0 − �, p+ + �, p−) − H3(p0, p+, p−). (18)

Case 2 When p− − p+ < � ≤ p0 − 1
3 ,

P∗
Y|X(y|x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�+p−−p+
2p0

, if (x, y) = (0, 1)
�+p+−p−

2p0
, if (x, y) = (0,−1)

1 − �
p0

, if (x, y) = (0, 0)

1, if (x, y) = (1, 1) or (−1,−1)

0, otherwise

(19)

P∗
Y(0) = p0 − �, P∗

Y(1) = � + p− + p+
2

, P∗
Y(−1) = � + p− + p+

2
(20)
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In this case, the rate-distortion function is given by

H3
(
P∗

Y(0), P∗
Y(1), P∗

Y(−1)
) − H3(p0, p+, p−)

= H3

(

p0 − �,
� + p− + p+

2
,
� + p− + p+

2

)

− H3(p0, p+, p−)

= H2(p0 − �) + (� + p− + p+)H2

(
1

2

)

− H3(p0, p+, p−)

= H2(p0 − �) − H3(p0, p+, p−) + 1 − p0 + � . (21)

When taking � = p0 − 1/3 into (21), we just get the maximum possible capacity,
ρmax, because

H2

(
1

3

)

− H3(p0, p+, p−) + 2

3

= H3

(
1

3
,

1

3
,

1

3

)

− H3(p0, p+, p−)

= log2 3 − H3(p0, p+, p−)

= ρmax (22)

We can not expect larger capacity than ρmax even with distortion constraint
larger than p0 − 1/3. In other words, the embedding rate keeps constant when
� > p0 − 1/3.

Figure 1 shows the rate-distortion curve of a typical cover, with p0 = 0.7,

p+ = 0.1, p− = 0.2.

Fig. 1 Rate distortion
curve of ternary cover
reversible data hiding
(p0 = 0.7, p+ = 0.1, p− = 0.2)
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3 Proposed recursive code construction

In this section, we will present our code construction to approach the rate-distortion
bound (3), which has been motivated by the recursive construction [12]. We will
first present an analysis of the methodology; then some implementation details are
discussed; finally, a thorough algorithm diagram is presented.

3.1 Proposed code construction for reversible data hiding in ternary cover

Assume that the cover is a memoryless ternary sequence x = (x1, x2, · · · , xN), with
xi ∈ {−1, 0, 1}. The secret message m = (m1, m2, · · · , mL) is a binary random se-
quence with mi ∈ {0, 1}. We first divide the cover sequence x into g disjoint blocks,
in which the first g − 1 blocks have the same length K, and the last block has the
length Llast, and thus N = K(g − 1) + Llast. To finish the embedding, we have to set
Llast to be larger than K, and we will discuss how to determine Llast in Section 3.3.
We assume both N and g are large enough. The cover block is denoted by xi, and the
corresponding stego block is denoted by yi, i = 1, . . . , g.

We embed message into each block sequentially by the embedding function
Emb(), such that (Mi+1, yi) = Emb(Mi, xi), with i = 1, . . . , g and M1 = m. In other
words, the embedding process in the ith block outputs the message embedded in the
(i + 1)th block, Mi+1. The length of Mg+1 will be zero, meaning that the message m is
completely embedded into x. Figure 2 briefly depicts the data embedding process.
The extraction and cover reconstruction are processed in a backwards manner
with a extraction function Ext(), such that (Mi, xi)=Ext(Mi+1, yi), with i = g, . . . , 1.
The functions, Emb() and Ext(), will be realized by using the decompression and
compression algorithms of an entropy coder, denoted by Decomp() and Comp()

respectively. For simplicity, we assume that the entropy coder can reach entropy.
To embed the message with minimal distortion, we select conditional pmf accord-

ing to the rate-distortion pair (R,�) such that R = L/(K(g − 1)) and � = ρ−1(R)

where ρ−1() is the inverse function of (3). Note that (3) is an explicit expression of
(1), and it obviously is monotonically increasing with �, and thus its inverse function
exists. We can estimate the value of � = ρ−1(R) by a numerical solution.

The message m will be embedded into the first (g − 1) blocks, and the last
block is used to store the information for reconstructing the (g − 1)th block and
the parameters needed by the recipient. As implied by the proof of rate-distortion
function in the previous section, the conditional pmf has different forms in the
case 0 ≤ � ≤ p− − p+ and the case p− − p+ < � ≤ p0 − 1/3, so we will depict our
construction respectively according to these two cases. In both cases, the conditional

Fig. 2 Sequential blockwise
data embedding
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pmf (16) and (19) show that the optimal test channel is to only modify 0 to 1 or −1.
For simplicity, we denote d0 = P∗

Y|X(0|0), d+ = P∗
Y|X(1|0), and d− = P∗

Y|X(−1|0).

Case 1 0 ≤ � ≤ p− − p+

Data embedding process In the first case, by (16), we get the probability of 0 being
modified, (d0, d+, d−), such that

d0 = 1 − �

p0
, d+ = �

p0
, d− = 0. (23)

Denote M1 = m, and then we describe how to do (M2, y1)=Emb(M1, x1). We first
extract all zero symbols from the first block x1, and denoted this all-zero subsequence
by x′

1 and its length by L(x′
1). We will only embed message into x′

1. To do that, we
decompress the message sequence M1 by the decompression algorithm Decomp() of
the entropy decoder with parameter (d0, d+, d−), such that

(y′
1, b 1) = Decomp(M1, (d0, d+, d−), L(x′

1)). (24)

Equation (24) means that the first b 1 bits of M1, i.e., (m1, · · · , mb 1), are decom-
pressed into a ternary sequence y′

1 with length L(x′
1) and the distribution such that

P(y′
1i = 0) = d0, P(y′

1i = 1) = d+, P(y′
1i = −1) = d−, 1 ≤ i ≤ L(x′

1). In fact, y′
1 is a

binary sequence in this case because d− = 0. Second, we substitute the subsequence
x′

1 with y′
1, by which we embed b 1 bits of messages into x1 and get the stego

block y1. At the receiver side, the message bits, (m1, · · · , mb 1), can be extracted by
compressing y′

1 with parameter (d0, d+, d−), such that

(m1, · · · , mb 1) = Comp(y′
1, (d0, d+, d−)). (25)

Because the average length of x′
1 is Kp0 and the entropy coder can reach entropy,

the average length of the message embedded into x1, i.e., the expectation of b 1, is
equal to

Kp0 H3(d0, d+, d−) = Kp0 H2

(
�

p0

)

. (26)

The average amount of distortion introduced by this embedding process is Kp0(d+ +
d−) = K�, so the average distortion with respect to the length of cover is equal to �.

As our data embedding method is reversible, we should be able to restore
x1, which can be fulfilled by embedding some overhead information of x1 into
the subsequent blocks. Now, the question is, what’s the overhead of x1? In [7],
Fridrich recommended a strategy that compresses x1 with an entropy encoder and
the compressed sequence is its overhead. Indeed we can implement a conditional
compression so that the length of the overhead can be cut down. From the data
embedding process we notice that only the 0’s in x1 are used for embedding message,
while the 1’s and −1’s are not changed. Furthermore, in the first case, the 0 will only
be modified to 1 as d− = 0. So, if y1i = 0, then x1i = 0; if y1i = −1, then x1i = −1; if
y1i = 1, then x1i = 1 or x1i = 0. Thus, to losslessly restore x1, we only need to record
the element x1i whose corresponding y1i equal to 1, for 1 ≤ i ≤ K, and obviously
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such kind of elements include Kp0d+ 0’s and Kp+ 1’s on average. Therefore, we can
compress these elements by using an entropy encoder with parameter

(
p0d+

p0d+ + p+
,

p+
p0d+ + p+

)

, (27)

and the compressed sequence is the overhead of x1. In this way, the average length
of the overhead is slashed from KH3(p0, p+, p−) to

K(p0d+ + p+)H2

(
p0d+

p0d+ + p+

)

= K(� + p+)H2

(
�

� + p+

)

. (28)

We denote the compressed overhead of x1 by O(x1) and concatenate it in the front
of the rest bits of M1 to generate M2, i.e.,

M2 = O(x1)||(m(b 1+1), · · · , mL) (29)

In the same manner as above, some bits in the front of M2 are embedded into
x2 and the overhead of x2 is concatenated with the rest bits of M2 to generate M3,
and then some bits of which is then embedded into x3...This process is implemented
sequentially until the (g − 1)th block. For the last cover block xg, we losslessly
compress it with parameters (p0, p+, p−) and empty out some space to save Mg and
the parameters needed by the recipient. The parameters should be embedded into
the end of xg in a backwards manner, and the detail will be described in Section 3.3.
Because the last block includes the overhead for reconstructing itself and all bits of
Mg, Mg+1 will be empty, which implies the finish of the data embedding precess.

Data extraction and cover restoration process The data extraction and cover restora-
tion is processed in a backwards manner, such that (Mi, xi) = Ext(Mi+1, yi), with
i = g, . . . , 1. First, we read the parameters from the end of y. According to these
parameters, we could know how to segment y. We also know the parameters
of Decomp() and Comp(). Second, from the last stego block, we read Mg and
reconstruct the last cover block xg by Decomp(yg, (p0, p+, p−), Llast)., which is just
the process of (Mg, xg) = Ext(Mg+1, yg).

Next, we describe how to do (Mg−1, xg−1) = Ext(Mg, yg−1). First, determine the
number of 1′s in yg−1, denoted by lg−1. Second, with the parameter (27), decompress
Mg from its front into a lg−1-length binary sequence, denoted by zg−1, such that

(zg−1, cg−1) = Decomp
(

Mg,

(
p0d+

p0d+ + p+
,

p+
p0d+ + p+

)

, lg−1

)

(30)

Herein, the output, cg−1, means that the first cg−1 bits of Mg are decompressed, and
the rest bits of it will be used to construct Mg−1. Replacing 1′s of yg−1 with zg−1,
we just get the (g − 1)th cover block xg−1. Therefore, we can determine the indexes
of 0′s in xg−1. According to these indexes, we extract a subsequence from yg−1,
which is compressed with the parameter (23), and then the compressed sequence
is concatenated in the front of the rest bits of Mg to generate Mg−1. In the same
manner, we can do (Mi, xi) = Ext(Mi+1, yi), for i = g − 2, · · · , 1, which will restore
every cover block and outputs M1 = m.

Example 1 Figure 3 shows a simple example of our coding method, in which K is set
to be 10. First, extract the 0’s of x1, denoted as x′

1 and decompress of M1 by using an
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Fig. 3 Example of the proposed coding method in Case 1

entropy decoder with parameter (d0, d+, d−), until the length of the decompressed
sequence is the same as that of x′

1; in this example, we assume that the first five bits,
“0, 0, 1, 0, 1”, are decompressed into y′

1 = “0, 0, 0, 1, 0, 0”. Second, substitute x′
1 with

y′
1 and get y1. Third, record the elements of x1i whose corresponding y1i equal to

1, that is “1, 0”, denoted by “overhead”. Then, the “1, 0” is to be compressed and
concatenated in the front of the rest bits of M1 to generate M2.

To extract the embedded message and restore x1, we first extract M2 from y2, and
decompress it from its front to get the overhead “1, 0”. Then, we substitute the 1’s
in y1 with “1, 0” and thus x1 is restored. After that, we can extract elements y1i from
y1 according to the index i such that x1i = 0, and get the subsequence y′

1. Finally we
compress y′

1 into the embedded message “0, 0, 1, 0, 1” with parameters (d0, d+, d−).

Case 2 p− − p+ < � ≤ p0 − 1/3

Data embedding process The code construction in this case is similar to that of Case
1, but the parameters of entropy encoder and decoder are different. In this case, by
(19), the changing probability of 0, (d0, d+, d−), is given as follows

d0 = 1 − �

p0
, d+ = � + p− − p+

2p0
, d− = � − p− + p+

2p0
. (31)

The data embedding process can also be depicted with Fig. 2. We denote M1 = m,
and do (M2, y1)=Emb(M1, x1) as follows. First, we extract all 0’s from x1 (denoted by
x′

1), and then decompress M1 until the length of the decompressed sequence (denoted
by y′

1) is the same as that of x′
1. The decompression is done by using the decoding

algorithm of the entropy decoder with parameter (d0, d+, d−) determined by (31).
Second, we substitute x′

1 with y′
1 and obtain the stego block y1. The average length of

the embedded message is equal to

Kp0 H3(d0, d+, d−) = Kp0 H3

(

1 − �

p0
,
� + p− − p+

2p0
,
� − p− + p+

2p0

)

= K p0 H2

(
p0 − �

p0

)

+ K�H2

(
� + p− − p+

2�

)

. (32)

The average amount of distortion introduced by this embedding process is Kp0(d+ +
d−) = K�, so the average distortion with respect to the length of cover is equal to �.
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To restore x1, we can embed some overhead information of x1 into x2. As we only
embed message in the 0’s of x1 and leave the 1’s and −1’s unchanged. If y1i = 0,
then x1i = 0; if y1i = 1, then x1i = 1 or x1i = 0; if y1i = −1, then x1i = −1 or x1i =
0. Thus, to losslessly restore x1, we only need to record the elements of x1i whose
corresponding y1i equal to 1, which is denoted by “overhead1”, and the elements
of x1i whose corresponding y1i equal to −1, which is denoted by “overhead2”. The
“overhead1” consists of Kp0d+ 0’s and Kp+ 1’s on average, which can be compressed
by using an entropy encoder with parameter

(
p0d+

p0d+ + p+
,

p+
p0d+ + p+

)

. (33)

The “overhead2” consists of Kp0d− 0’s and Kp− -1’s on average, which can be
compressed by using an entropy encoder with parameter

(
p0d−

p0d− + p−
,

p−
p0d− + p−

)

. (34)

Therefore, the average length of the compressed overhead is equal to

K(p0d+ + p+)H2

(
p0d+

p0d+ + p+

)

+ K(p0d− + p−)H2

(
p0d−

p0d− + p−

)

= K
� + p− + p+

2

(

H2

(
2p+

� + p− + p+

)

+ H2

(
2p−

� + p− + p+

))

. (35)

After that, the compressed overheads are concatenated in the front of the rest bits of
M1 and generate M2. In the same manner as above, we do (Mi+1, yi) = Emb(Mi, xi)

for i = 2, · · · , g − 1. For the last block, we losslessly compress it with parameter
(p0, p+, p−) and save some space to store Mg and some parameters, which is similar
to the process in Case 1.

Data extraction and cover restoration process The data extraction and cover restora-
tion is processed in a backwards manner, such that (Mi, xi) = Ext(Mi+1, yi), with
i = g, . . . , 1. First, we read parameters from the end of y, and segment y according to
the parameters. From the last stego block, we read Mg and reconstruct the last cover
block by Decomp(yg, (p0, p+, p−), Llast).

Next, we describe how to do (Mg−1, xg−1) = Ext(Mg, yg−1). First, determine the
number of 1′s and −1′s in yg−1, denoted by l+g−1 and l−g−1 respectively. Second, with
parameters (33), we decompress Mg from its front into a l+g−1-length binary sequence,
denoted by z+

g−1; and with parameters (34), we decompress the rest bits of Mg from
the front into a l−g−1-length binary sequence, denoted by z−

g−1. Note that we represent
non-zero symbols in z+

g−1 by 1, and in z−
g−1 by −1. Third, we replace all 1′s of yg−1

with z+
g−1 and all −1′s of yg−1 with z−

g−1, and get the cover block xg−1. According to
the indexes of 0′s in xg−1, we extract a subsequence from yg−1, which is compressed
with parameter (31), and then the compressed sequence is concatenated in the front
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Fig. 4 Example of our coding method in Case 2

of the rest bits of Mg to generate Mg−1. In the same manner, we can do (Mi, xi) =
Ext(Mi+1, yi), for i = g − 2, · · · , 1, which will restore every cover block and outputs
M1 = m.

Example 2 Figure 4 shows an example of our coding method in Case 2, in which K is
again set to 10. First, extract the 0’s of x1, denoted as x′

1 and decode a subsequence of
M1 with an entropy decoder of parameter (d0, d+, d−), until the length of the decoded
sequence is the same as that of x′

1; in this example, we assume that the first five
bits “0, 0, 1, 0, 1” is decompressed into y′

1 = “0, 1, 0,−1, 1, 0, 0”. Second, substitute x′
1

with y′
1 and get y1. Third, record the elements of x1i whose corresponding y1i equal

to 1, that is “overhead1” = “0, 1, 0”, and the elements of x1i whose corresponding
y1i equal to −1, that is “overhead2” = “0,−1,−1”. Compress these two overheads
respectively. Finally, the compressed overheads are concatenated in the front of the
rest bits of M1 to generate M2.

To extract the embedded message and restore x1, we first extract M2 from the
latter block, and decompress it from the front to get “overhead1” and “overhead2”.
Then, we substitute the 1’s in y1 with “overhead1” = “0, 1, 0”, and substitute the
−1’s in y1 with “overhead2” = “0,−1, −1”, and thus x1 is restored. After that, y′

1
can be easily extracted from y1 according to the index i such that x1i = 0. Finally we
compress y′

1 to obtain the embedded bits of M1.
Before we end this part, we should declare that in our presentation, we only

consider the case 0 ≤ � ≤ p− − p+ and the case p− − p+ < � ≤ p0 − 1/3, but our
coding method also works for the case � > p0 − 1/3. In this case, it is processed in
the same way as � = p0 − 1/3 in Case 2, as the rate-distortion curve shows that the
embedding rate will never become larger with increasing � in this model.

3.2 Proof of optimality

In this subsection, we will prove that our construction is optimal in the sense that
as long as the entropy coder reaches entropy, the proposed codes asymptotically
approach the rate-distortion bound (3) when the number of blocks N/K tends to
infinity. In fact, when N/K tends to infinity, the influence of the last block is negligi-
ble, and thus the average embedding rate and distortion of the code construction can
be calculated within one K-length block.
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Case 1 0 ≤ � ≤ p− − p+

When the average distortion D = �, on one hand, the rate-distortion function in
this case is given by

ρ(�) = H3(p0 − �, p+ + �, p−) − H3(p0, p+, p−). (36)

On the other hand, for a K-length cover block in the code construction, the average
length of embedded messages is given by (26) and the average length of information
needed by reconstructing this block is given by (28), so the average embedding rate
in one block is given by (26)–(28)/K, that is,

R1(�) = p0 H2

(
�

p0

)

− (� + p+)H2

(
�

� + p+

)

. (37)

By the expansion of entropy function, it is easy to verify that R1(�) = ρ(�).

Case 2 p− − p+ < � ≤ p0 − 1/3

In this case, the rate-distortion function is given by:

ρ(�) = H2(p0 − �) − H3(p0, p+, p−) + 1 − p0 + �. (38)

In our code construction, in a K-length cover block, the average length of
embedded messages is given by (32) and the average length of information needed
by reconstructing this block is given by (35), so the average embedding rate in one
block is given by (32)–(35)/K, that is,

R2(�) = p0 H2

(
p0 − �

p0

)

+ �H2

(
� + p− − p+

2�

)

−� + p− + p+
2

(

H2

(
2p+

� + p− + p+

)

+ H2

(
2p−

� + p− + p+

))

. (39)

By expansion of entropy functions, it is easy to verify that R2(�) = ρ(�) also holds
in this case.

As a summarization of these two cases, we prove that, for any given distortion
constraint � such that 0 ≤ � ≤ p0 − 1/3, the proposed codes can reach the rate-
distortion bound.

Therefore, in Case 1, the maximum embedding rate, R1max, achievable by the
proposed codes can be expressed by the rate-distortion bound at � = p− − p+,
that is

R1max = H3(p0 − p− + p+, p−, p−) − H3(p0, p+, p−). (40)

In Case 2, the maximum embedding rate, R2max, achievable by the proposed codes is
equal to ρmax, that is,

R2max = ρmax = log2 3 − H3(p0, p+, p−). (41)

3.3 Transferring parameters in the last block

It has been declared above that our data extraction method is implemented in a back-
wards manner. For a recipient, in order to commence the data extraction process,
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he needs to know clearly about where and how to start the decoding. This requires
negotiation between the transmitter and the recipient before the communication
begins. One direct idea is to embed some negotiation information into the cover
itself, and the recipient can easily extract the information without ambiguity, then
with the negotiation information the recipient can start data extraction process. But
there are two questions: what’s the negotiation information, and how to embed it
into the cover in a reversible manner?

We find that there are a few parameters that the recipient have to know for
successful decoding, these parameters include p0, p+, L (length of the message),
K (length of each block except for the last one), Llast (length of the last block) and
LMg (length of the message embedded into the last block). The recipient can figure
out other information from these parameters.

To answer the second question, let’s reconsider the composition of the last stego
block, yg. As mentioned above, we will losslessly compress xg with (p0, p+, p−) and
save some space to store Mg and the parameters. As depicted in Fig. 5, Comp(xg)
is the losslessly compressed edition of xg, and Paras stands for the parameters. The
format of Paras can be negotiated by the transmitter and the recipient beforehand,
but notice that it should be embedded in a backward manner, from the last element
yg to preceding elements.

After receiving the stego sequence y, the recipient can determine its length N, and
read parameters from the end of the stego sequence. Then, as both K and Llast are
known, the decoder understands how to segment y. On the other hand, the decoder
can calculate other important parameters with the extracted parameters: p− = 1 −
p0 − p+; the embedding rate R = L/(N − Llast). Furthermore, calculate R1max and
R2max by (40) and (41) respectively, and estimate � = ρ−1(R) by the inverse function
of (3). Then, the recipient calculates parameters for compression/decompression
with (27) if R ≤ R1max, or with (33) and (34) if R1max < R ≤ R2max. After that, the
recipient can implement the backwards decoding process, as discussed in Section 3.1.

There is another important issue that relates to the length of the last block,
Llast. As mentioned above, after being compressed, the saved space in xg is about
(log2 3 − H3(p0, p+, p−))Llast bits, which should be long enough to contain Mg and
the parameters. Note that the embedding rate R = L/(N − Llast) is respect to the
length of the first g − 1 blocks, so the proof of optimality implies that the message
can be completely embedded into the first g − 1 blocks as g is large enough. In other
words, the first g − 1 blocks can carry the message and the overhead for restore the
first g − 2 cover blocks, and thus we can expect that the length of Mg is close to the
average length of compressed overhead of a K-length block. In Case 1, the length
of the overhead before being compressed is equal to the number of 1′s in the stego
block, which is not larger than K/3 as implied by the conditional pmf (16); in Case
2, the length of the overhead before being compressed is equal to the sum of the
number of 1′s and −1′s in the stego block, which is not larger than (2K)/3 as implied
by the conditional pmf (19). Therefore, we reserve Loh bits for Mg and set Loh = K/3
for Case 1 and Loh = (2K)/3 for Case 2. We also denote LParas as the length of Paras

Fig. 5 Composition of ylast
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(in practice, the parameters can be represented with no more than 100 bits, thus
LParas ≤ 100). Then, the following inequality should be satisfied:

(log2 3 − H3(p0, p+, p−))Llast ≥ Loh + LParas, (42)

and thus,

Llast ≥ Loh + LParas

log2 3 − H3(p0, p+, p−)
. (43)

We first set Llast equal to the the lower bound (43) and then determine the number
of K-length blocks by

g − 1 =
⌊

N − Llast

K

⌋

. (44)

The ultimate length of the last block is set as

Llast = N − (g − 1)K. (45)

In practice, to ensure enough space in the last block, we can use a somewhat larger
Llast.

3.4 Diagram of proposed code construction

As a conclusion of above discussion, we’d present our code construction within an
algorithm diagram (Algorithm 1):

We also ran a simulation of proposed code construction. We selected adaptive
arithmetic coder as the entropy coder, and set the cover length N = 100000, and the
block length K = 300. For each embedding rate, we run Algorithm 1 one hundred
times by randomly generating covers and messages, and estimated the distortion as
an average over the 100 samples. The test was performed at 2.8 GHz with 2GB RAM.
The algorithm was implemented in Matlab R2009a. For each embedding rate, the

Fig. 6 Simulation of the
proposed code construction
(p0 = 0.7, p+ = 0.1, p− = 0.2)
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Algorithm 1 Ternary recursive code construction
Data Embedding

– 0. Input the cover sequence x with length N, and the message sequence m with
length L.

– 1. Estimate p0, p+ and p− from x. Set the initial value of Llast by the lower
bound of (43).

– 2. Calculate number of blocks g by (44) and update the value of Llast by (45)
and then calculate the embedding rate R = L/(N − Llast).

– 3. Calculate R1max, R2max by (40) and (41) respectively. If R ≤ R1max, do Step
4; if R1max < R ≤ R2max, do Step 5; else, if R > R2max, stop the embedding
process and return “The message is too long to be embedded successfully."

– 4. Calculate � via inverse function of (36). Calculate parameters for entropy
encoding and decoding by (23) and (27). Implement the data embedding
procedure as described in Section 3.1-Case 1.

– 5. Calculate � via inverse function of (38). Calculate parameters for entropy
encoding and decoding by (31), (33) and (34). Implement the data embed-
ding procedure as described in Section 3.1-Case 2.

– 6. If Mg and the parameters, p0, p+, L, K, Llast, LMg , can be completely
embedded into the last block, output the stego sequence y; otherwise, set
Llast = Llast + K, and redo Step 2–Step 6.

Data Extraction and Cover Restoration

– 0. Input the stego sequence y with length N.
– 1. Extract the parameters p0, p+, L, K, Llast, LMg from the end of y; calculate

other parameters such that p− = 1 − p0 − p+, R = L/(N − Llast); if R ≤
R1max, do 2–3; if R1max < R ≤ R2max, do 4–5.

– 2. Calculate � via inverse function of (36). Calculate parameters for entropy
encoding and decoding by (23) and (27). Implement the data extraction and
cover restoration procedure as described in Section 3.1-Case 1. Output the
message m and the cover x.

– 3. Calculate � via inverse function of (38). Calculate parameters for entropy
encoding and decoding by (31), (33) and (34). Implement the data extraction
and cover restoration procedure as described in Section 3.1-Case 2. Output
the message m and the cover x.

average running time of one turn data embedding is 86.4 ms in this setting. As shown
in Fig. 6, the simulation result is quite close to the theoretic upper bound. This also
proves the correctness and feasibility of our coding method.

4 A case study: reversible data hiding in JPEG images

Quantized DCT Coefficients are the typical scenario fitting the cover model de-
scribed in Section 2, and thus the proposed construction can be used to design RDH
schemes in DCT based multimedia such as JPEG images and H.264 videos. In this
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section, we take JPEG as an example to show how the proposed code construction
can improve the performance of reversible data hiding in DCT domain.

JPEG is the most popular image format currently, but so far there are not that
many publications on RDH for JPEG images, compared to works on RDH for
grayscale images. Fridrich [7] first made such an attempt. She first selected some
mid-frequency quantized DCT coefficients (QDCTCs) which are equal to 0 and
1, the 0’s and 1’s thus form a compressible binary sequence. The sequence is then
losslessly compressed and some spare space is emptied out. The spare space is finally
used to embed secret message. In one of our previous papers [27], we increased
the PSNR of Fridrich et al.’s method by binary codes, but both in [7] and in [27]
the achievable maximum payloads are quite small. Chang [4] proposed a RDH
algorithm that searches special “zero” pattern in each block. Then message can
be embedded by directly substituting the zeros with message bits. Lin et al. [15]
combined Chang’s method with Difference Expansion Technique and improved the
payload considerably. Li [13] and Xuan [24] adopted the idea of histogram shift in
their methods. Li’s [13] method combines simple histogram shift with quantization
table modification and has shown a satisfactory performance. Xuan [24] took several
factors into consideration and tried to find best PSNR adaptively for any given
payload.

4.1 RDH algorithm for JPEG images with proposed code construction

It’s well known that the quantized DCT coefficients (QDCTCs) in a 8 × 8 block
approximately follow a Laplacian distribution. Fig.7 is the histogram of mid-
frequency QDCTCs of lenna.jpg image, with Q-factor equal to 80. By mid-frequency
coefficients, we mean the QDCTCs in each block whose zig-zag order is between
11 and 21, which are in bold font in Table 1. The quantization step is very
close in these 11 entries. The reason to choose mid-frequency coefficients is that

Fig. 7 Histogram of
mid-frequency QDCTCs
(lenna.jpg, Q = 80)
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Table 1 Selected coefficient
entries in each block

1 2 6 7 15 16 28 29
3 5 8 14 17 27 30 43
4 9 13 18 26 31 42 44
10 12 19 25 32 41 45 54
11 20 24 33 40 46 53 55
21 23 34 39 47 52 56 61
22 35 38 48 51 57 60 62
36 37 49 50 58 59 63 64

modification to low frequency coefficients is harmful to image’s subjective quality,
while modification to high frequency coefficients affects the objective quality and
filesize considerably. As shown in Fig. 7, more than 90 % QDCTCs fall into the
set {0, 1,−1}. Specially, the percentage of 0 is about 70 % of all the coefficients.
Therefore, typical images, e.g., the lenna.jpg, with Q-factor less than or equal to
80, provide an ideal example of ternary cover if we focus on the mid-frequency
coefficients that belong to the set {0, 1,−1} and skip all other coefficients. Then, we
can embed message into the selected coefficients in a reversible way with our coding
method over ternary cover, which has been detailed in Section 3. In this way, we can
embed message into JPEG image reversibly.

The following is the diagram of our reversible data hiding algorithm for JPEG
images (Algorithm 2).

Algorithm 2 Reversible data hiding in JPEG images
Data Embedding

– 1. For the cover JPEG image, first extract all mid-frequency coefficients in each
block in order and form a sequence; extract the subsequence of coefficients
whose value belong to {0, 1,−1}, denoted as x_ter;

– 2. Implement RDH over x_ter via our code construction, and the correspond-
ing stego is denoted as y_ter;

– 3. Substitute x_ter with y_ter; then put the modified coefficients back to their
original locations; then form a new JPEG image.

Data Extraction and Cover Restoration

– 1. Extract y_ter in the same way as x_ter is extracted in the Data Embedding
Process;

– 2. Implement data extraction and cover restoration over y_ter, which has been
presented in Section 3; thus x_ter is restored; meanwhile, the embedded
message is extracted;

– 3. Substitute y_ter with x_ter; then put the modified coefficients back to their
original locations to form a new JPEG image. The new JPEG image is indeed
the original cover JPEG image.

4.2 Experimental results

The data embedding process will lead to the deterioration of image’s quality
and increase of JPEG filesize, which are not appreciated. Indeed, it is a latent
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(a) Original (b) Payload=2000 (c) Payload=5000 (d) Payload=20000

Fig. 8 Comparison of original and stego Lenna images

requirement that the RDH algorithm should not cause severe image quality degra-
dation or serious filesize increment. In our experiments, we choose some commonly
adopted measurements to measure the performance of proposed method these
measurements include payload (the number of message bits embedded), PSNR (to
measure stego image’s objective quality against cover image) and filesize increment.
Generally, if a RDH method can achieve high PSNR value and small filesize
increment for a large payload range, we say the method is good.

We implement our RDH algorithm on a very popular image, Lenna, with Q-factor
equal to 80. Figure 8 shows the original and stego Lenna images. (a) is the original
image, and (b) to (d) are the stego images with payload equal to 2000, 5000, 20000,
respectively. From the figure, we can see that even with as many as 20000 message
bits embedded, the image’s quality is still quite good. Table 2 shows the stego images’
PSNRs and filesize increments under various payloads. The filesize increment is
about 0.25 byte/bit, which means on average, per bit payload embedding will give
rise to 2 bits increment in the JPEG file length. With as many as 2000 bits to embed,
the filesize just increase 1.3 %, which is acceptable in most applications.

We also compare our method with four previous arts: [4, 13, 15, 24]. Out of
fairness, we do not modify the quantization table in any of these experiments. We
randomly selected 200 grayscale images from website [1], and compress into JPEG
images with normal JPEG coder. Then we run before-mentioned RDH algorithms
on those JPEG images, and average the results. Regarding the fact that different
compression scales will lead to difference in distribution of QDCTCs and thus
difference in performance, we also implement the experiments on JPEG images of
different Q-factors.

Figures 9 and 10 show the performance comparison of these methods. Figure 9
shows the average PSNR against payload curves for images with Q-factor equal to
50 and 80, while Fig. 10 demonstrates the filesize increment comparison.

Table 2 PSNR and filesize increment under different payloads

Test image Lenna

Payload (bits) 0 2,000 3,000 5,000 10,000 15,000 20,000
PSNR (dB) – 52.69 50.72 48.53 45.19 42.97 40.82
Filesize (Bytes) 36,131 36,617 36,888 37,360 38,586 39,871 41,617
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Fig. 9 PSNR comparison of different methods

From the above figures, we can draw the conclusion that our RDH algorithm
shows great advantage over previous arts as regards to image quality, which is
measured by PSNR. Throughout payload axis, when embedding the same number
of message bits, our method has a PSNR improvement of at least 3 dB compared to
other works. The excellent performance comes from several reasons. First we only
embed data into mid-frequency coefficients, other than Chang’s, Lin’s work; then, we
only modify the zero coefficients by 1 in DCT domain, so the distortion is restricted.
The power of proposed code construction also contributes to the good performance.

On the other hand, the performance of filesize increment is not that impressive,
from Fig. 10, the filesize increment of our algorithm is smaller than Li’s, Chang’s and
Lin’s method, but larger than Xuan’s work. Our method is based on modifying 0 to 1
and −1 with certain probability, this will break up consecutive zeros and thus disturbs
the run-level coding. This explains most filesize increment. In Chang’s and Lin’s
work, it’s quite possible to modify high-frequency zeros and thus filesize increment
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Fig. 10 Filesize increment comparison of different methods
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Table 3 Computation time
comparison of different
methods

Time unit: second

Payload (bits) 2,000 5,000 10,000 15,000 20,000

Li 0.010 0.010 0.012 0.013 0.013
Xuan 0.119 0.142 0.162 0.178 0.185
Chang 0.050 0.122 0.246 0.353 0.467
Lin 0.030 0.064 0.134 0.181 0.234
Proposed 0.062 0.068 0.075 0.077 0.083

problem is very serious in their methods. Li’s method modifies mid-frequency zeros
like our work, but simple histogram shift method cannot provide efficient restriction
to increase of filesize. Xuan’s method modifies the largest DCT coefficients, which
are often low-frequency coefficients, modifying them has little influence on filesize.
This is the reason why Xuan’s method has a very small filesize increment.

Our method doesnot work very well on filesize benchmark. How to improve
the performance? Our ternary code construction is based on the assumption that
cover symbols are independent, thus we have not considered avoiding breaking
up consecutive zeros, so it seems hard to restrict filesize increment from the code
construction’s viewpoint. On the other hand, our method modifies coefficients equal
to 0, while Xuan’s method modifies the largest coefficients. If we combine our
method with Xuan’s method (i.e., a part payload is embedded with our method, and
the other part of payload is embedded with Xuans method), we can make a better
trade-off between image quality and filesize increment.

Besides comparing the performance of different methods, we also compare the
computation time. Table 3 shows the average computation time of those methods
when the payload varies from 2000 to 20000 bits, in which the time unit is second.
From the table, we can find Li’s method is quite fast. The speed of proposed method
is also satisfactory. Meanwhile, in Chang’s and Lin’s work, computation time is
almost linear to payload, but in both Li’s and proposed method the relation between
computation time and payload is not that strong. Our method is based on ternary
recursive code and entropy coder, so computation time keeps almost the same.

As a whole, the figures and Table 3 imply that the proposed method makes a
better trade-off than previous works, as regards to image quality, filesize increment
and computation time.

5 Conclusion

Though many reversible data hiding techniques have been reported since it first
appeared, there are only a few theoretical works in this area. In this paper, we
formulate the theoretical model of reversible data hiding over a special ternary cover,
in which the probability of 0 is prominent. We also propose a code construction to
realize RDH over the ternary cover. The performance of the code construction is
based on the performance of the coding and decoding algorithms of an entropy coder.
We prove that our code construction can asymptotically approach the rate-distortion
bound with increasing length of cover sequence as long as the adopted entropy coder
reaches entropy. Finally, a case study is presented that applies the code construction
to RDH for JPEG images. The experimental results demonstrate the outstanding
performance of our RDH method. Our code construction is also applicable to other
DCT-based multimedia signals as digital audio and digital video.
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However, the model considered in this paper is not that universal. One of our
further work is to extend the model and the optimal code construction to the multi-
ary covers.
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